Monatshefte für Chemie Chemical Monthly Printed in Austria

Hexafluoroacetone as Protecting and Activating Reagent. Glycosylated Malic, Citramalic, and Thiomalic Acid Derivatives, New Glycosylated Building Blocks for Drug Design [1]

Christoph Böttcher, Jan Spengler, and Klaus Burger^{*,#}

Department of Organic Chemistry, University of Leipzig, D-04103 Leipzig, Germany

Received January 7, 2004; accepted February 2, 2004 Published online July 23, 2004 © Springer-Verlag 2004

Summary. Glycosylated α -hydroxy and α -mercapto acids have been synthesized starting from malic/ citramalic/thiomalic acid and Ac_4 - β -D-Glc-NH₂/Bzl₄- β -D-Glc-NH₂ using hexafluoroacetone as protecting and activating reagent.

Keywords. α -Hydroxy acids; α -Mercapto acids; Dielectrophiles; Glycosylamines; Maleimido sugars; 3-Hydroxysuccinimido sugars; *N*-Glycosylated depsipeptides; α -Hydroxyacylamino acids; α -Mercaptoacylamino acids.

Introduction

Glycoproteins and glycopeptides are ubiquitous in nature. They play a key role in various biological processes both within cells and at cell surfaces. These include protein transport, cell adhesion, and signal transduction [2]. Furthermore, glyco-sylation influences properties of peptides and proteins such as solubility, thermal and proteolytical stability [3] as well as conformation and folding [4]. Aberrant glycosylation of cellular proteins and glycolipids are associated with various diseases, including cancer [5]. Another remarkable feature are the enhanced binding properties of glycoclusters [6]. Therefore, glycoconjugates are promising candidates for drug design [7].

Deciphering the roles of glycoproteins in controlled studies requires convenient synthetic access to a large number of glycoconjugates with different binding motifs. Glycoconjugates isolated from biological sources are microheterogeneous

^{*} Corresponding author. E-mail: burger@organik.chemie.uni-leipzig.de

[#] Dedicated to Prof. Dr. Horst Wilde on the occasion of his 65th birthday

and cannot be applied for mechanistic studies. Therefore, the development of new methodologies for the assembly of homogeneous glycopeptidomimetics by chemoselective ligation is of current interest. Although glycosylated α -hydroxy acids are known for some time, they received little attention as building blocks for peptide and depsipeptide modification. *Fisher et al.* [8] reported on a considerable improvement of the pharmacokinetic properties of the peptidic *Renin* inhibitor *Ditekiren* on *N*-terminal incorporation of *N*-glycosylated malic and tartaric acid. *Risley et al.* [9] synthesized a series of β -*N*-glycosylasparagine analogues, including *N*-glycosylated malic acid derivatives. As protective groups for site-selective β -functionalization of malic acid acetone [8, 10] and chloral have been used [9, 11].

As part of an ongoing program we synthesized new types of building blocks for glycopeptide modification, including *N*-glycosylated α -hydroxy acid derivatives [12] testing new protection/activation concepts, like the "hexafluoroacetone route" [13], since the choice of the protecting group is crucial for the success in the synthesis of glycopeptides [14].

Results and Discussion

 α -Hydroxy and α -mercapto acids, including multifunctional species like malic (1a), citramalic (1b), and thiomalic acid (1c), react with hexafluoroacetone in *DMSO* or *DMF* at room temperature to give five-membered lactones 2 (Scheme 1) [15–17]. The reaction proceeds quantitatively, no six-membered lactone could be identified by NMR spectroscopy in the crude material. However, 10–15% were lost during the work-up procedure, because of the water solubility of compounds 2.

In one step, protection of both the α -hydroxy and the adjacent carboxy group is achieved. Concomitantly, the α -carboxy group is selectively activated toward nucleophiles. The β -carboxy groups of malic, citramalic, and thiomalic acid remain unaffected and can be derivatized in a consecutive step [18]. Compounds **2** can be easily prepared in a 50–100 g scale. On exclusion of moisture 2,2-bis(trifluoromethyl)-1,3-dioxolan-4-ones as well as 2,2-bis(trifluoromethyl)-1,3-oxathiolan-5-ones can be stored at -30° C for months without decomposition.

Upon treatment with thionyl chloride or *DAST* (diethylaminosulfur trifluoride), compounds 2 can be transformed into β -acid chlorides 3 [19] and β -acid fluorides 4 [20], respectively (Scheme 1). Compounds of type 3 and 4 represent a new class of dielectrophiles having two centers of different reactivity. Recently, *N*-protected amino acid chlorides and amino acid fluorides have received growing attention as acylating agents in *N*-glycopeptide synthesis [21]. Therefore, we became interested in studying the efficiency of compounds 3 and 4 as double acyl transfer reagents. As models for acyl acceptors we chose glycosyl amines Ac_4 - β -*D*-*Glc*-NH₂ (**5a**) [22] and Bzl_4 - β -*D*-*Glc*-NH₂ (**5b**) [23].

We found that β -acid chlorides **3a**, **3b** and glycosylamines **5a**, **5b**, which are weak nucleophiles, react site-selectively at 0°C in *DCM* (dichloromethane) in the presence of one equivalent of pyridine or 2,6-lutidine to give the *N*-acylated products **6a–6d** within minutes in high yields (73–91%), while the lactone moiety remains unaffected, acting as protecting group (Scheme 2).

¹H NMR analysis (300 MHz) of the crude products reveals that the β -anomer (${}^{3}J_{\text{H-1/H-2}} = 9.0-9.3 \text{ Hz}$) is formed exclusively in the case of **6a–6c**. Whereas for **6d**, after isolation of the β -anomer by crystallization, the α -anomer can be detected by ¹H NMR (${}^{3}J_{\text{H-1/H-2}} = 5.7 \text{ Hz}$) and TLC in the concentrated mother liquor. Purification of compounds **6** by crystallization is the method of choice. On work-up by column chromatography the yields are lower. When stronger bases like *NEM* (*N*-ethylmorpholine) and *DIEA* (diisopropylethylamine) are used a competing retro Michael addition is the reason for decreasing yields (40–60%) [24].

The acid fluorides 4a, 4b are noticeable less reactive than the corresponding acid chlorides 3a, 3b. Nevertheless, with 4a, 4b a clean and site-selective acylation of 5a, 5b can be achieved at 0°C in the presence of pyridine. Again, on application of stronger bases like *NEM* and *DIEA*, the yields are lower.

On treatment with bases compounds 6a-6d undergo an intramolecular cyclocondensation. When the cyclization process is performed in the presence of pyridine in boiling chloroform lactones 6a-6d are transformed to give stereoselectively 3-hydroxysuccinimido sugars 7a-7d in very good yields, which can be purified by column chromatography (Scheme 2).

However, when a solution of **6a** was treated in ethyl acetate with stronger bases like *NEM*, *DIEA*, or *DBU* (1,8-diazabicyclo[5.4.0]undec-7-ene) a diastereomeric mixture of **7a**, together with maleimido sugar **8a** was obtained (Scheme 3, Table 1) [25]. **6b** reacts analogously. Since there is no α -proton ($R = CH_3$) present, no epimerization can take place.

Table 1. Product ratio 7a/8a, (3S)-7a/(3R)-7a, and 7b/8b on treatment of 6a, 6b with different basesBaseProduct ratio^aYield/%Ratio^bProduct ratio^aYield/%

Base	7a/8a	7a + 8a	(3S)- 7a /(3R)- 7a	7b/8b	7b + 8b
DBU	5:1	57	5:3	4:1	65
DIEA	3:1	68	7:3	15:1	68
NEM	25:1	73	7:3	8b n.d.	72

^a Determined by integration of the ¹H NMR spectra of the crude products; ^b determined by integration of the ¹H NMR spectra of an isolated diastereomeric mixture **7a**

Finally, we demonstrated that glycosylated hexafluoroacetone-protected α -hydroxy acid derivatives **6a–6d** are excellent acyl transfer reagents. With amino acid and dipeptide esters or amides, they react to give *N*-glycoconjugates **9** (Scheme 4) which can be used as building blocks for the construction of libraries of glycosylated depsipeptides which we suggest to be an interesting new class of drug candidates. To the best of our knowledge glycosylated depsipeptides are unknown.

As by-products of the aminolytic cleavage 7a-7d are formed in variable yields. In all cases studied so far, chromatographic separation of by-products 7 from compounds 9 was achieved without problems. As expected, the sterically more demanding compounds 6b and 6d ($R^2 = CH_3$) exhibit lower reactivity toward *N*nucleophiles. Consequently, an increasing tendency to undergo the intramolecular ring closure is observed. Furthermore, the amount of by-products is increasing with the steric demand of the side-chain of the amino acid derivatives which act as nucleophiles (Table 2).

The product ratio of the aminolytic ring opening can be influenced by the solvent used. So far *DMF* was the best solvent for the synthesis of *N*-glycosylated dipeptide amides from **6b** and H-*Phe*-NH₂.

Mercapto carboxylic acids have been isolated from biologically active naturally occurring peptides [26]. Furthermore, mercapto acids as well as acylmercapto acids have been introduced as a new class of monomers for the construction of new types of peptidomimetics only recently [17, 27]. A β -mercapto acid is a subunit of *Captopril*, a classical drug for treatment of hypertension [28]. Likewise, an α -mercapto acid subunit is present in *Omaprilat* and *Gemopatrilat*. Both are vasopeptidase inhibitors, currently under clinical evaluation [29]. Compounds containing mercapto or acylmercapto subunits exhibit strong inhibitor activities on metal-containing enzymes [30].

Scheme 4

Educt	Nucleophile H- <i>Xaa-R</i> ³	Product	Product ratio 9:7	Yield/% 9+7
6a	H-Gly-O ^t Bu	9a/1	7a n.d.	76
6a	$H-Ala-O^{t}Bu$	9a/2	9.3:1	72
6a	H-Val-O ^t Bu	9a/3	6.5:1	82
6a	H -Phe- $O^{t}Bu$	9a/4	7.0:1	80
6a	$H-Pro-O^{t}Bu$	9a/5	7 a n.d.	72
6a	H -Phe- NH_2	9a/6	7 a n.d.	80
6b	$H-Gly-O^tBu$	9b/1	3.9:1	78
6b	$H-Ala-O^{t}Bu$	9b/2	1.8:1	72
6b	H-Val-O ^t Bu	9b/3	1.4:1	81
6b	H -Phe- $O^{t}Bu$	9b/4	1.1:1	82
6b	$H-Pro-O^{t}Bu$	_	<1:20	76
6b	H -Phe- NH_2	9b/5	1.4:1	80
6c	H -Phe- $O^{t}Bu$	9c/1	7c n.d.	78
6c	$H-Pro-O^{t}Bu$	9c/2	7c n.d.	74
6c	H-Phe-Ala-O ^t Bu	9c/3	7c n.d.	67
6d	H-Phe-O ^t Bu	9d/1	5.2:1	69
6d	$H-Pro-O^{t}Bu$	9d/2	1:1.4	82
6d	H-Phe-Ala-O ^t Bu	9d/3	4.2:1	88

Table 2. Product ratio 9/7 obtained on treatment of compounds 6a-6d with amino acid esters and dipeptide esters

Scheme 5

The hexafluoroacetone route can also be applied for the synthesis of the so far undescribed *N*-glycosylated thioanalogues. Glycosylated 2,2-bis(trifluoromethyl)-1,3-oxathiolan-5-ones **10** are slightly less reactive than 2,2-bis(trifluoromethyl)-1,3-dioxolan-4-ones **6**. Thiomalic acid was introduced as a racemate, consequently the products obtained were diastereomeric mixtures (Scheme 5).

Since a growing number of reports focus on peptidomimetics as potential drug candidates, built from two or more different types of monomers [31], the development of new types of building blocks, like α -mercapto acids, adds a new facette to peptide and depsipeptide modification [17].

Conclusion

We described a preparatively simple access to *N*-glycosylated α -hydroxy and α -mercapto acids as well as to *N*-glycosylated α -hydroxyacyl and α -mercaptoacyl amino acid derivatives. They represent new types of building blocks for the synthesis of depsipeptide surrogates and their thioanalogues in solution and on solid phase [32].

Experimental

General

Solvents were purified and dried prior to use. Reagents were used as purchased. TLC was performed on Silica Gel 60 F_{254} (Merck) with detection by UV light or phosphomolybdic acid/ceric sulphate in 5% aqueous sulfuric acid followed by heating. Flash column chromatography was performed using silica gel (32–63 μ m) with solvent systems given in the text. Melting points (uncorrected) were determined on a *Boetius* heating table. Optical rotation indices were measured using a Schmidt & Haensch Polartronic-D polarimeter in a 5 cm cell. ¹H (200 MHz, 300 MHz, 400 MHz, 600 MHz), ¹³C (50 MHz, 75 MHz, 100 MHz), and ¹⁹F (188 MHz, 282 MHz) NMR spectra were recorded on a Varian Gemini 2000, Gemini 300, Bruker DRX-400 and Bruker AVANCE DRX-600 spectrometer, respectively. *TMS* was used as reference for ¹H and ¹³C NMR spectra (internal), and CF₃COOH for ¹⁹F NMR spectra (external). IR spectra were obtained with a FTIR spectrometer (Genesis ATI Mattson/Unicam). Mass spectra were recorded on a Finnigan ZAB-HSQ spectrometer (FAB-matrix: 3-*NBA*).

Synthesis of N-Glycosylated Malic and Citramalic Acid Derivatives

Protocol 1. A solution of **3** (1 equiv.) in dry *DCM* (5 cm³ per 1 mmol) was cooled to 0°C. Then a freshly prepared solution of the corresponding β -*D*-glycosylamine **5** (1 equiv.) and pyridine (1 equiv.) in *DCM* (5 cm³ per 1 mmol) was added over a period of 30 min. After stirring the mixture for 1 h at 0°C *DCM* was added (20 cm³ per 1 mmol). The organic layer was washed with ice-cold citric acid (10% solution) and ice water (10 cm³ per 1 mmol). After drying with MgSO₄, the solvent was removed and the crude product recrystallized.

Protocol 2. A solution of **6** (1 equiv.) in dry CHCl₃ ($20 \text{ cm}^3 \text{ per 1 mmol}$) was heated after addition of pyridine (5 equiv.) under reflux for 16 h. Then CHCl₃ ($40 \text{ cm}^3 \text{ per 1 mmol}$) was added and the organic layer was washed with citric acid (10% solution) and water ($10 \text{ cm}^3 \text{ per 1 mmol}$). After drying the organic layer with MgSO₄ the solvent was removed and the crude product purified by crystal-lization or flash chromatography.

Protocol 3. A solution of **6** (1 equiv.) in dry ethyl acetate (10 cm^3 per 1 mmol) was treated with a base (1 equiv.) at room temperature until the starting material was consumed (TLC analysis). Then

ethyl acetate was added ($20 \text{ cm}^3 \text{ per 1 mmol}$) and the organic layer was extracted with citric acid (10% solution) and water ($10 \text{ cm}^3 \text{ per 1 mmol}$). After drying with MgSO₄ the solvent was evaporated and the residue purified by flash chromatography.

Protocol 4. To a solution of the amino acid *tert*-butylester hydrochloride (1.2 equiv.) and *NEM* (1.2 equiv.) in dimethylformamide (*DMF*) (5 cm³ per 1 mmol) a solution of **6** (1 equiv.) in ethyl acetate (5 cm³ per 1 mmol) was added. The mixture was stirred at room temperature until the starting material was consumed (TLC analysis). Then the solvent was evaporated *in vacuo* and the residue dissolved in CHCl₃ (50 cm³ per 1 mmol). The organic layer was washed with citric acid (10% solution), water, and brine (10 cm³ per 1 mmol). After drying with MgSO₄ the organic solvent was removed and the residue purified by column chromatography.

$N-(2,3,4,6-Tetra-O-acetyl-\beta-D-glucopyranosyl)-2-[(5S)-4-oxo-2,2-bis(trifluoromethyl)-1,3-dioxolan-5-yl]acetamide ($ **6a**, C₂₁H₂₃F₆NO₁₃)

3a (1.85 g, 6.16 mmol) and **5a** (2.14 g, 6.16 mmol) were reacted due to protocol 1. Purification by crystallization from CHCl₃/petroleum ether. Yield 3.35 g (89%), colorless needles, mp 165–166°C, $[\alpha]_{\rm D} = -1^{\circ} {\rm cm}^3 {\rm g}^{-1} {\rm dm}^{-1}$ (c = 1.5, *DCM*); ¹H NMR (CDCl₃, 300 MHz, COSY): $\delta = 2.02$ (s, 6H), 2.03 (s, 3H), 2.07 (s, 3H) (4OAc), 2.61 (dd, 1H, J = 8.5, 16.2 Hz, CH₂^{Mal}), 2.93 (dd, 1H, J = 2.8, 16.2 Hz, CH₂^{Mal}), 3.84 (m, 1H, 5-H), 4.08 (dd, 1H, J = 2.1, 12.3 Hz, 6-H_a), 4.28 (dd, 1H, J = 4.8, 12.3 Hz, 6-H_b), 4.90 (dd, 1H, J = 9.6, 9.6 Hz, 2-H), 5.04 (dd, 1H, J = 9.6, 9.9 Hz, 4-H), 5.16 (dd, 1H, J = 2.8, 8.5 Hz, CH^{Mal}), 5.27 (dd, 1H, J = 9.3, 9.6 Hz, 1-H), 5.31 (dd, 1H, J = 9.6, 9.6 Hz, 3-H), 6.06 (d, 1H, J = 9.3 Hz, 1-NH) ppm; ¹⁹F NMR (CDCl₃, 282 MHz): $\delta = -3.14$ (q, 3F, J = 9.0 Hz), -2.86 (q, 3F, J = 9.0 Hz) ppm; ¹³C NMR (CDCl₃, 75 MHz, HETCOR): $\delta = 20.76$, 20.97, 21.00, 21.11 (4OAc), 38.48 (CH₂^{Mal}), 61.16 (6-CH₂), 68.66 (4-CH), 71.12 (2-CH), 72.26 (CH^{Mal}), 72.92 (3-CH), 74.31 (5-CH), 78.79 (1-CH), 98.19 (sept, J = 36 Hz), 119.23 (q, J = 286 Hz), 120.03 (q, J = 289 Hz), 167.04, 167.45, 170.06, 170.25, 171.06, 171.58 ppm; IR (KBr): $\bar{\nu} = 1854$, 1753, 1706, 1543 cm⁻¹; MS (FAB): m/z = 612.1 [M + H]⁺.

N-(2,3,4,6-Tetra-O-acetyl- β -D-glucopyranosyl)-2-[(5S)-5-methyl-4-oxo-2,2-bis(trifluoromethyl)-1,3-dioxolan-5-yl]acetamide (**6b**, C₂₂H₂₅F₆NO₁₃)

3b (2.10 g, 6.68 mmol) and **5a** (2.32 g, 6.68 mmol) were reacted due to protocol 1. Purification by crystallization from ethyl acetate/petroleum ether. Yield 3.80 g (91%), colorless needles, mp 106–108°C, $[\alpha]_{\rm D} = -8^{\circ} \, {\rm cm}^3 \, {\rm g}^{-1} \, {\rm dm}^{-1} \, (c = 1.5, \, {\rm CHCl}_3); {}^{1}{\rm H} \, {\rm NMR} \, ({\rm CDCl}_3, \, 300 \, {\rm MHz}): \delta = 1.72$ (s, 3H, CH₃^{Citr}), 1.99 (s, 3H), 2.00 (s, 3H), 2.02 (s, 3H), 2.06 (s, 3H) (4OAc), 2.67 (d, 1H, *J* = 15.0 Hz, CH₂^{Citr}), 2.77 (d, 1H, *J* = 15.0 Hz, CH₂^{Citr}), 3.79 (ddd, 1H, *J* = 1.8, 4.8, 9.9 Hz, 5-H), 4.01 (dd, 1H, *J* = 1.8, 12.3 Hz, 6-H_a), 4.28 (dd, 1H, *J* = 4.8, 12.3 Hz, 6-H_b), 4.87 (dd, 1H, *J* = 9.6, 9.6 Hz, 2-H), 4.97 (dd, 1H, *J* = 9.6, 9.9 Hz, 4-H), 5.22 (dd, 1H, *J* = 9.3, 9.3 Hz), 5.24 (dd, 1H, *J* = 9.6, 9.3 Hz) (1,3-H), 6.81 (d, 1H, *J* = 9.3 Hz, 1-NH) ppm; {}^{19}{\rm F} \, {\rm NMR} \, ({\rm CDCl}_3, 282 \, {\rm MHz}): \delta = -2.63 \, (q, 3F, *J* = 9.0 Hz), -2.08 \, (q, 3F, *J* = 9.0 Hz) ppm; {}^{13}{\rm C} \, {\rm NMR} \, ({\rm CDCl}_3, 75 \, {\rm MHz}): \delta = 20.28, 20.47, 20.52, 20.59 \, (4OAc), 22.54 \, ({\rm CH}_3^{\rm Citr}), 43.53 \, ({\rm CH}_2^{\rm Citr}), 61.88 \, (6-{\rm CH}_2), 68.20, 70.25, 72.83, 73.75 \, (2,3,4,5-{\rm CH}), 77.93 \, (1-{\rm CH}), 79.96 \, ({\rm C}^{\rm Citr}), 97.14 \, ({\rm sept}, J = 36 \, {\rm Hz}), 119.0 \, (q, J = 290 \, {\rm Hz}), 119.1 \, (q, J = 287 \, {\rm Hz}), 166.51, 169.10, 169.68, 169.93, 170.49, 170.72 \, {\rm ppm}; \, {\rm IR} \, ({\rm KBr}): \, \bar{\nu} = 1843, 1755, 1710, 1541 \, {\rm cm}^{-1}; \, {\rm MS} \, ({\rm FAB}): m/z = 626.1 \, [{\rm M} + {\rm H}]^+.

N-(2,3,4,6-Tetra-O-benzyl- β -D-glucopyranosyl)-2-[(5S)-4-oxo-2,2bis(trifluoromethyl)-1,3-dioxolan-5-yl]acetamide (**6c**, C₄₁H₃₉F₆NO₉)

3a (802 mg, 2.67 mmol) and **5b** (1.44 g, 2.67 mmol) were reacted due to protocol 1. Purification by crystallization from $CHCl_3$ /petroleum ether. Yield 1.70 g (79%), colorless crystals, mp 161–162°C,

$$\begin{split} & [\alpha]_{\rm D} = -11^{\circ}\,{\rm cm}^3\,{\rm g}^{-1}\,{\rm dm}^{-1}\,(c=2.0,\,{\rm CH}_2{\rm Cl}_2);\,^{1}{\rm H}\,{\rm NMR}\,({\rm CDCl}_3,\,300\,{\rm MHz},\,{\rm COSY});\,\delta=2.41\,({\rm dd},\,1{\rm H},\,J=7.9,\,16.6\,{\rm Hz},\,{\rm CH}_2^{\rm Mal}),\,2.67\,({\rm dd},\,1{\rm H},\,J=3.0,\,16.6\,{\rm Hz},\,{\rm CH}_2^{\rm Mal}),\,3.37\,({\rm dd},\,1{\rm H},\,J=9.0,\,9.0\,{\rm Hz},\,2{\rm -H}),\,3.53\,({\rm m},\,1{\rm H},\,5{\rm -H}),\,3.69\,({\rm dd},\,1{\rm H},\,J=1.8,\,10.7\,{\rm Hz},\,6{\rm -H}_{\rm a}),\,3.72{\rm -}3.80\,({\rm m},\,3{\rm H},\,3{\rm -H},\,4{\rm -H},\,6{\rm -H}_{\rm b}),\,4.46\,({\rm d},\,1{\rm H},\,J=12.1\,{\rm Hz},\,{\rm CH}_2{\rm Ph}),\,4.54\,({\rm d},\,1{\rm H},\,J=10.8\,{\rm Hz},\,{\rm CH}_2{\rm Ph}),\,4.61\,({\rm d},\,1{\rm H},\,J=12.1\,{\rm Hz},\,{\rm CH}_2{\rm Ph}),\,4.65\,({\rm d},\,1{\rm H},\,J=11.7\,{\rm Hz},\,{\rm CH}_2{\rm Ph}),\,4.83\,({\rm d},\,1{\rm H},\,J=11.7\,{\rm Hz},\,{\rm CH}_2{\rm Ph}),\,4.83\,({\rm d},\,1{\rm H},\,J=10.8\,{\rm Hz},\,{\rm CH}_2{\rm Ph}),\,4.84\,({\rm d},\,1{\rm H},\,J=10.8\,{\rm Hz},\,{\rm CH}_2{\rm Ph}),\,4.93\,({\rm s},\,2{\rm H},\,{\rm CH}_2{\rm Ph}),\,5.09\,({\rm dd},\,1{\rm H},\,J=9.0,\,9.0\,{\rm Hz},\,1{\rm -H}),\,5.16\,({\rm dd},\,1{\rm H},\,J=3.0,\,7.9\,{\rm Hz},\,{\rm CH}^{\rm Mal}),\,5.58\,({\rm d},\,1{\rm H},\,J=9.0\,{\rm Hz},\,1{\rm -NH}),\,7.15{\rm -}7.38\,({\rm m},\,20{\rm H},\,{\rm H}^{\rm arom});\,^{19}{\rm F}\,\,{\rm NMR}\,({\rm CDCl}_3,\,282\,{\rm MHz});\,\,\delta=-3.01\,({\rm q},\,3{\rm F},\,J=9.0\,{\rm Hz}),\,-2.69\,({\rm q},\,3{\rm F},\,J=9.0\,{\rm Hz})\,{\rm pm};\,^{13}{\rm C}\,\,{\rm NMR}\,({\rm CDCl}_3,\,75\,{\rm MHz},\,{\rm HMQC});\,\delta=37.87\,({\rm CH}_2^{\rm Mal}),\,68.16\,(6{\rm -CH}_2),\,71.78\,({\rm CH}^{\rm Mal}),\,73.73,\,74.68,\,75.09,\,75.97\,(4{\rm CH}_2{\rm Ph}),\,76.53\,(5{\rm -CH}),\,77.58\,(4{\rm -CH}),\,79.10\,(1{\rm -CH}),\,79.49\,(2{\rm -CH}),\,86.09\,(3{\rm -CH}),\,97.77\,({\rm sept},\,J=36\,{\rm Hz}),\,118.94\,({\rm q},\,J=288\,{\rm Hz}),\,119.66\,({\rm q},\,J=290\,{\rm Hz}),\,127.9{\rm -}129.1,\,137.76,\,137.97,\,138.11,\,138.35\,({\rm C}^{\rm arom}),\,166.30,\,167.47\,{\rm ppm};\,{\rm IR}\,({\rm KBr});\,\bar{\nu}=1851,\,1673,\,1547\,{\rm cm}^{-1};\,{\rm MS}\,({\rm FAB});\,m/z=826.2\,[{\rm M}+{\rm Na}]^+. \end{split}$$

$N-(2,3,4,6-Tetra-O-benzyl-\beta-D-glucopyranosyl)-2-[(5S)-5-methyl-4-oxo-2,2-bis(trifluoromethyl)-1,3-dioxolan-5-yl]acetamide ($ **6d**, C₄₂H₄₁F₆NO₉)

3b (1.18 g, 3.75 mmol) and **5b** (2.02 g, 3.74 mmol) were reacted due to protocol 1. Purification by crystallization from ethyl acetate/petroleum ether. Yield 2.23 g (73%), colorless crystals, mp 129–131°C, $[\alpha]_D = -17^{\circ}$ cm³ g⁻¹ dm⁻¹ (c = 2.0, CHCl₃); ¹H NMR (CDCl₃, 300 MHz, COSY): $\delta = 1.68$ (s, 3H, CH₃^{Citr}), 2.57 (d, 1H, J = 15.0 Hz, CH₂^{Citr}), 2.66 (d, 1H, J = 15.0 Hz, CH₂^{Citr}), 3.41 (m, 1H, 2-H), 3.55 (m, 1H, 5-H), 3.73 (dd, 1H, J = 1.8, 10.5 Hz, 6-H_a), 3.77–3.82 (m, 3H, 3-H, 4-H, 6-H_b), 4.52 (d, 1H, J = 12.0 Hz, CH₂Ph), 4.57 (d, 1H, J = 10.8 Hz, CH₂Ph), 4.67 (d, 1H, J = 12.0 Hz, CH₂Ph), 4.69 (d, 1H, J = 11.4 Hz, CH₂Ph), 4.86 (d, 1H, J = 10.8 Hz, CH₂Ph), 4.88 (d, 1H, J = 11.7 Hz, CH₂Ph), 4.91 (s, 2H, CH₂Ph), 5.17 (dd, 1H, J = 9.3, 9.0 Hz, 1-H), 5.80 (d, 1H, J = 9.0 Hz, 1-NH), 7.16–7.38 (m, 20H, H^{arom}); ¹⁹F NMR (CDCl₃, 282 MHz): $\delta = -2.68$ (q, 3F, J = 9.0 Hz), -2.29 (q, 3F, J = 9.0 Hz) ppm; ¹³C NMR (CDCl₃, 75 MHz, HETCOR, APT): $\delta = 22.48$ (CH₃^{Citr}), 44.43 (CH₂^{Citr}), 68.32 (6-CH₂), 73.90, 74.91, 75.25, 76.06 (4CH₂Ph), 76.76 (5-CH), 77.76 (4-CH), 79.10 (1-CH), 80.25 (C^{Citr}), 80.79 (2-CH), 86.19 (3-CH), 97.30 (sept, J = 36 Hz), 119.35 (q, J = 289 Hz), 128.0–128.8, 137.97, 138.18, 138.25, 138.50 (C^{arom}), 166.04, 169.35 ppm; IR (KBr): $\bar{\nu} = 1846$, 1668, 1558 cm⁻¹: MS (FAB): m/z = 840.3 [M + Na]⁺, 818.3 [M + H]⁺.

From the mother liquor 20 mg of the *α*-anomer were isolated and spectroscopically fully characterized. Separation by flash chromatography (ethyl acetate/petroleum ether = 1/4, R_f (**6d**-*α*) = 0.35, R_f (**6d**-*β* = 0.30); ¹H NMR (CDCl₃, 600 MHz, COSY): δ = 1.63 (s, 3H, CH₃^{Citr}), 2.69 (s, 2H, CH₂^{Citr}), 3.49–3.52 (m, 2H, 3,5-H), 3.56 (dd, 1H, J = 1.5, 11.1 Hz, 6-H_a), 3.62 (dd, 1H, J = 9.9, 9.6 Hz, 4-H), 3.65 (dd, 1H, J = 3.6, 11.1 Hz, 6-H_b), 3.74 (dd, 1H, J = 5.7, 9.6 Hz, 2-H), 4.38 (d, 1H, J = 12.5 Hz, CH₂Ph), 4.45 (d, 1H, J = 11.1 Hz, CH₂Ph), 4.49–4.56 (m, 3H, CH₂Ph), 4.69 (d, 1H, J = 11.1 Hz, CH₂Ph), 4.71 (d, 1H, J = 11.1 Hz, CH₂Ph), 4.80 (d, 1H, J = 11.1 Hz, CH₂Ph), 5.66 (dd, 1H, J = 5.7, 6.6 Hz, 1-H), 6.41 (d, 1H, J = 6.6 Hz, 1-NH), 7.06–7.34 (m, 20H, H^{arom}) ppm; ¹⁹F NMR (CDCl₃, 282 MHz): δ = -2.76 (q, 3F, J = 9.0 Hz), -2.34 (q, 3F, J = 9.0 Hz) ppm; ¹³C NMR (CDCl₃, 75 MHz, HMQC, APT): δ = 22.46 (CH₃^{Citr}), 44.37 (CH₂^{Citr}), 68.34 (6-CH₂), 71.77 (5-CH), 72.96, 73.65, 74.93 (3CH₂Ph), 75.28 (1-CH), 75.67 (CH₂Ph), 76.96 (4-CH), 77.41 (2-CH), 79.99 (C^{Citr}), 82.02 (3-CH), 97.26 (sept, J = 36 Hz), 119.21 (q, J = 289 Hz), 127.7–128.7, 137.20, 138.03, 138.27, 138.34 (C^{arom}), 166.52, 169.45 ppm.

(3S)-3-Hydroxy-1-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl)pyrrolidin-2,5-dione (**7a**, C₁₈H₂₃NO₁₂)

6a (611 mg, 1.00 mmol) was heated with pyridine (396 mg, 5.00 mmol) in dry CHCl₃ under reflux for 16h due to protocol 2. Purification by flash chromatography (ethyl acetate/petroleum ether = 4/1, $R_{\rm f}$ =0.38). Yield 350 mg (79%), needles from ethyl acetate/petroleum ether, mp 174–176°C, $[\alpha]_{\rm D}$ = -33° cm³ g⁻¹ dm⁻¹ (*c* = 1.0, acetone); ¹H NMR (CDCl₃, 300 MHz, COSY): δ = 1.95 (s,

3H), 2.00 (s, 3H), 2.03 (s, 3H), 2.06 (s, 3H) (4OAc), 2.63 (dd, 1H, J = 4.5, 18.3 Hz, CH_2^{Mal}), 3.06 (dd, 1H, J = 8.4, 18.3 Hz, CH_2^{Mal}), 3.80 (m, 1H, 5-H), 4.14–4.18 (m, 2H, 6-H₂), 4.56 (dd, 1H, J = 4.5, 8.4 Hz, CH^{Mal}), 5.18 (dd, 1H, J = 9.6, 9.6 Hz, 4-H), 5.26 (dd, 1H, J = 9.6, 9.0 Hz, 3-H), 5.27 (d, 1H, J = 9.3 Hz, 1-H), 5.86 (dd, 1H, J = 9.3, 9.3 Hz, 2-H) ppm; ¹³C NMR (CDCl₃, 75 MHz): $\delta = 20.55$, 20.66 (2c), 20.81 (4OAc), 37.14 (CH_2^{Mal}), 61.77 (6-CH₂), 66.49, 67.82, 67.90, 73.33, 74.83 (2,3,4,5-CH, CH^{Mal}), 78.29 (1-CH), 169.55, 169.86, 170.24, 170.87, 172.61, 176.53 ppm; IR (KBr): $\bar{\nu} = 3430$, 1751, 1628 cm⁻¹; MS (FAB): m/z = 446.1 [M + H]⁺.

(3S)-3-Hydroxy-3-methyl-1-(2,3,4,6-tetra-O-acetyl- β -D-glucopyranosyl)pyrrolidin-2,5-dione (7b, C₁₉H₂₅NO₁₂)

6b (625 mg, 1.00 mmol) was heated with pyridine (396 mg, 5.00 mmol) in dry CHCl₃ under reflux for 16 h due to protocol 2. Purification by crystallization from ethyl acetate/petroleum ether. Yield 361 mg (79%), mp 182–184°C, $[\alpha]_D = -16^{\circ} \text{ cm}^3 \text{ g}^{-1} \text{ dm}^{-1}$ (c = 2.0, CHCl₃); ¹H NMR (CDCl₃, 300 MHz, COSY): $\delta = 1.53$ (s, 3H, CH₃^{Citr}), 1.97 (s, 3H), 2.03 (s, 3H), 2.06 (s, 3H), 2.09 (s, 3H) (4OAc), 2.75 (d, 1H, J = 18.0 Hz, CH₂^{Citr}), 2.86 (d, 1H, J = 18.0 Hz, CH₂^{Citr}), 3.43 (s, 1H, OH), 3.82 (m, 1H, 5-H), 4.18–4.21 (m, 2H, 6-H₂), 5.22 (dd, 1H, J = 9.6, 9.6 Hz, 4-H), 5.28 (d, 1H, J = 9.3 Hz, 1-H), 5.30 (dd, 1H, J = 9.3, 9.6 Hz, 3-H), 5.88 (dd, 1H, J = 9.3, 9.3 Hz, 2-H) ppm; ¹³C NMR (CDCl₃, 75 MHz): $\delta = 20.48$, 20.65 (2c), 20.81 (4OAc), 24.74 (CH₃^{Citr}), 43.34 (CH₂^{Citr}), 61.80 (6-CH₂), 67.89 (2c), 71.98, 73.26, 74.79 (2,3,4,5-CH, C^{Citr}), 78.35 (1-CH), 169.54, 169.77, 170.21, 170.86, 172.35, 178.28 ppm; IR (KBr): $\bar{\nu} = 3450$, 1735, 1730 cm⁻¹; MS (FAB): $m/z = 460.1 \text{ [M + H]}^+$.

(3S)-3-Hydroxy-1-(2,3,4,6-tetra-O-benzyl- β -D-glucopyranosyl)pyrrolidin-2,5-dione (**7c**, C₃₈H₃₉NO₈)

6c (402 mg, 0.50 mmol) was heated with pyridine (198 mg, 2.50 mmol) in dry CHCl₃ under reflux for 16 h due to protocol 2. Purification by flash chromatography (ethyl acetate/petroleum ether = 1/1, $R_f = 0.39$). Yield 268 mg (84%), needles from ethyl acetate/petroleum ether, mp 118–119°C; $[\alpha]_D = -30^{\circ} \text{ cm}^3 \text{ g}^{-1} \text{ dm}^{-1}$ (c = 0.9, CH₂Cl₂); ¹H NMR (CDCl₃, 300 MHz, COSY): $\delta = 2.40$ (dd, 1H, J = 5.1, 18.0 Hz, CH₂^{Mal}), 2.92 (br.s, 1H, CH₂^{Mal}), 3.58 (m, 1H, 5-H), 3.64–3.75 (m, 4H, 3,4-H, 6-H₂), 4.46–4.60 (m, 6H, 2-H, CH^{Mal}, 4CH₂Ph), 4.83 (d, 1H, J = 10.5 Hz, CH₂Ph), 4.85 (d, 1H, J = 12.0 Hz, CH₂Ph), 4.91 (s, 2H, CH₂Ph), 5.05 (d, 1H, J = 9.3 Hz, 1-H), 7.17–7.35 (m, 20H, H^{arom}) ppm; ¹³C NMR (CDCl₃, 75 MHz, APT): $\delta = 37.29$ (CH₂^{Mal}), 66.65 (CH^{Mal}), 68.94 (6-CH₂), 73.72, 75.27, 75.44, 75.97 (4CH₂Ph), 7.43, 77.91, 78.24 (2,4,5-CH), 80.03 (1-CH), 86.82 (3-CH), 127.9–128.8, 138.18, 138.27, 138.63 (Ca^{arom}), 173.10, 177.83 ppm; IR (KBr): $\bar{\nu} = 3500$, 1760 cm⁻¹; MS (FAB): m/z = 638.2 [M + H]⁺.

(3S)-3-Hydroxy-3-methyl-1-(2,3,4,6-tetra-O-benzyl- β -D-glucopyranosyl)pyrrolidin-2,5-dione (7d, C₃₉H₄₁NO₈)

6d (409 mg, 0.50 mmol) was heated with pyridine (198 mg, 2.50 mmol) in dry CHCl₃ under reflux for 16 h due to protocol 2. Purification by flash chromatography (ethyl acetate/petroleum ether = 1/2, R_f =0.26). Yield 287 mg (88%), oil which crystallizes within a few days, mp 151–152°C, $[\alpha]_D = -9^{\circ} \text{ cm}^3 \text{ g}^{-1} \text{ dm}^{-1}$ (c = 1.4, CHCl₃); ¹H NMR (CDCl₃, 300 MHz, COSY): δ = 1.43 (br.s, 3H, CH₃^{Citr}), 2.56 (br.d, 1H, J = 18.0 Hz, CH₂^{Citr}), 2.72 (br.d, 1H, J = 18.0 Hz, CH₂^{Citr}), 3.65 (m, 1H, 5-H), 3.72–3.83 (m, 4H, 3,4-H, 6-H₂), 4.55 (d, 1H, J = 12.0 Hz, CH₂Ph), 4.61–4.69 (m, 4H, 2-H, 3CH₂Ph), 4.89 (d, 1H, J = 10.8 Hz, CH₂Ph), 4.90 (d, 1H, J = 11.4 Hz, CH₂Ph), 4.93 (d, 1H, J = 11.4 Hz, CH₂Ph), 5.15 (br.d, 1H, J = 9.0 Hz, 1-H), 7.22–7.39 (m, 20H, H^{arom}) ppm; ¹³C NMR (CDCl₃, 75 MHz, APT): δ = 25.44 (br., CH₃^{Citr}), 43.28 (br., CH₂^{Citr}), 68.65 (6-CH₂), 72.00, 73.52, 75.07, 75.26, 75.74 (4CH₂Ph, C^{Citr}), 76.99, 77.84, 78.32, 79.88 (br.), 86.65 (1,2,3,4,5-CH), 127.9–128.8, 138.19, 138.39, 138.52, 138.57 (C^{arom}), 173.13, 179.62 ppm; IR (KBr): $\bar{\nu}$ = 3500, 1728 cm⁻¹. MS (FAB): m/z = 652.3 [M + H]⁺.

1-(2,3,4,6-Tetra-O-acetyl-β-D-glucopyranosyl)-1H-pyrrol-2,5-dione (8a, C₁₈H₂₁NO₁₁)

A solution of **6a** (611 mg, 1.00 mmol) in dry ethyl acetate was stirred at room temperature with *DIEA* (129 mg, 1.00 mmol) due to protocol 3. Reaction time: 2 d. Purificaton by flash chromatography (ethyl acetate/petroleum ether = 3/1). Yield 72 mg (17%) **8a** (R_f = 0.44), mp 139–141°C, [α]_D = -5° cm³ g⁻¹ dm⁻¹ (c = 1.2, CHCl₃) and 226 mg (51%) of a diastereomeric mixture of (3S)-**7a** and (3R)-**7a** (ratio 7:3, R_f = 0.25); ¹H NMR (CDCl₃, 300 MHz): δ = 1.94 (s, 3H), 2.01 (s, 3H), 2.04 (s, 3H), 2.07 (s, 3H) (4OAc), 3.79 (m, 1H, 5-H), 4.17–4.20 (m, 2H, 6-H₂), 5.20 (dd, 1H, J = 9.6, 9.6 Hz, 4-H), 5.22 (d, 1H, J = 9.3 Hz, 1-H), 5.27 (dd, 1H, J = 9.6, 9.0 Hz, 3-H), 5.89 (dd, 1H, J = 9.3, 9.3 Hz, 2-H), 6.75 (s, 2H, H^{olef}) ppm; ¹³C NMR (CDCl₃, 75 MHz): δ = 20.55, 20.69, 20.71, 20.84 (4OAc), 61.80 (6-CH₂), 67.91, 68.11, 73.63, 74.66 (2,3,4,5-CH), 77.62 (1-CH), 134.78, 168.71, 169.34, 169.48, 170.23, 170.77 ppm; IR (KBr): $\bar{\nu}$ = 1751, 1728, 1628 cm⁻¹; MS (FAB): m/z = 450.1 [M + Na]⁺, 428.1 [M + H]⁺.

3-Methyl-1-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl)-1H-pyrrol-2,5-dione (**8b**, C₁₉H₂₃NO₁₁)

A solution of **6b** (625 mg, 1.00 mmol) in dry ethyl acetate was stirred at room temperature with *DBU* (152 mg, 1.00 mmol) due to protocol 3. Reaction time: 1 d. Purification by flash chromatography (ethyl acetate/petroleum ether = 3/2). Yield 52 mg (12%) **8b** (R_f = 0.40), mp 143–145°C, [α]_D = -8° cm³g⁻¹ dm⁻¹ (c = 0.6, CHCl₃) and 242 mg (53%) **7b** (R_f = 0.22); ¹H NMR (CDCl₃, 600 MHz): δ = 1.92 (s, 3H), 2.00 (s, 3H), 2.03 (s, 3H), 2.05 (s, 3H) (4OAc), 2.07 (d, 3H, J = 2.0 Hz, CH₃), 3.78 (ddd, 1H, J = 2.3, 4.7, 9.9 Hz, 5-H), 4.13 (dd, 1H, J = 2.3, 12.6 Hz, 6-H_a), 4.17 (dd, 1H, J = 4.7, 12.6 Hz, 6-H_b), 5.18 (dd, 1H, J = 9.3, 9.3 Hz, 2-H), 6.36 (m, 1H, H^{olef}) ppm; ¹³C NMR (CDCl₃, 150 MHz): δ = 11.19 (CH₃), 20.57, 20.68, 20.70, 20.82 (4OAc), 61.82 (6-CH₂), 67.90, 68.07, 73.71, 74.53 (2,3,4,5-CH), 77.59 (1-CH), 128.13, 146.46, 168.71, 169.29, 169.48, 169.82, 170.27, 170.77 ppm; IR (KBr): $\bar{\nu}$ = 1753, 1728 cm⁻¹; MS (FAB): m/z = 442.1 [M + H]⁻¹.

tert-Butyl N-{(2S)-2-hydroxy-1,4-dioxo-4-[(2,3,4,6-tetra-O-acetyl- β -D-glucopyranosyl)amino]butyl}glycinate (**9a**/**1**, C₂₄H₃₆N₂O₁₄)

6a (306 mg, 0.50 mmol) was reacted with HCl*H-*Gly*-O'*Bu* (101 mg, 0.60 mmol) in the presence of *NEM* (69 mg, 0.60 mmol) due to protocol 4. Reaction time: 1 d. Purification by flash chromatography (ethyl acetate, $R_f = 0.36$). Yield 220 mg (76%), foam, $[\alpha]_D = -6^\circ \text{ cm}^3 \text{ g}^{-1} \text{ dm}^{-1}$ (c = 1.0, CHCl₃); ¹H NMR (CDCl₃, 300 MHz): $\delta = 1.51$ (s, 9H, CH₃^{Hu}), 2.06 (s, 3H), 2.07 (s, 3H), 2.09 (s, 3H), 2.11 (s, 3H) (4OAc), 2.63 (dd, 1H, J = 7.8, 15.9 Hz, CH₂^{Mal}), 2.88 (dd, 1H, J = 3.6, 15.9 Hz, CH₂^{Mal}), 3.88 (m, 1H, 5-H), 3.97 (d, 2H, J = 5.7 Hz, CH₂^{Gly}), 4.13 (dd, 1H, J = 1.8, 12.3 Hz, 6-H_a), 4.33 (dd, 1H, J = 4.5, 12.3 Hz, 6-H_b), 4.49 (m, 1H, CH^{Mal}), 4.57 (br.s, 1H, OH), 5.00 (dd, 1H, J = 9.6, 9.6 Hz), 5.11 (dd, 1H, J = 9.9, 9.6 Hz), 5.34 (dd, 1H, J = 5.7 Hz, NH^{Gly}) ppm; ¹³C NMR (CDCl₃, 75 MHz, APT): $\delta = 20.86$ (2c), 20.92, 21.01 (4OAc), 28.31 (CH₃^{HBu}), 39.77 (CH₂^{Mal}), 41.89 (CH₂^{Gly}), 61.93 (6-CH₂), 68.33, 69.09, 70.76, 73.02, 73.92 (2,3,4,5-CH, CH^{Mal}), 78.10 (1-CH), 82.75 (Ct^{HDu}), 169.15, 169.82, 170.24, 170.94, 171.34, 172.57, 174.75 ppm; IR (KBr): $\bar{\nu} = 3400$, 1751, 1676, 1535 cm⁻¹; MS (FAB): m/z = 577.2 [M + H]⁺.

tert-Butyl N-{(2S)-2-hydroxy-1,4-dioxo-4-[(2,3,4,6-tetra-O-acetyl- β -D-glucopyranosyl)-amino]butyl}alaninate (9a/2, C₂₅H₃₈N₂O₁₄)

6a (611 mg, 1.00 mmol) was reacted with HCl^{*}H-*Ala*-O'*Bu* (218 mg, 1.20 mmol) in the presence of *NEM* (138 mg, 1.20 mmol) due to protocol 4. Reaction time: 2 d. Purification by flash chromatography (ethyl acetate/petroleum ether = 5/1). Yield 30 mg (7%) **7a** ($R_{\rm f}$ = 0.30) and 382 mg (65%) **9a/2** ($R_{\rm f}$ = 0.23), foam, [α]_D = -4° cm³g⁻¹ dm⁻¹ (*c* = 1.2, CHCl₃); ¹H NMR (CDCl₃, 300 MHz): δ = 1.40 (d, 3H,

 $J = 7.2 \text{ Hz}, \text{CH}_3^{\text{Ala}}), 1.48 (\text{s}, 9\text{H}, \text{CH}_3^{\text{tBu}}), 2.03 (\text{s}, 3\text{H}), 2.05 (\text{s}, 3\text{H}), 2.09 (\text{s}, 3\text{H}), 2.10 (\text{s}, 3\text{H}) (4\text{OAc}), 2.55 (\text{dd}, 1\text{H}, J = 8.1, 15.9 \text{ Hz}, \text{CH}_2^{\text{Mal}}), 2.85 (\text{dd}, 1\text{H}, J = 3.3, 15.9 \text{ Hz}, \text{CH}_2^{\text{Mal}}), 3.88 (\text{m}, 1\text{H}, 5\text{-H}), 4.11 (\text{dd}, 1\text{H}, J = 2.1, 12.6 \text{ Hz}, 6\text{-H}_a), 4.31 (\text{dd}, 1\text{H}, J = 4.5, 12.3 \text{ Hz}, 6\text{-H}_b), 4.41-4.46 (\text{m}, 2\text{H}, \alpha\text{-CH}^{\text{Ala}}, \text{CH}^{\text{Mal}}), 4.51 (\text{d}, 1\text{H}, J = 5.7 \text{ Hz}, \text{OH}), 4.97 (\text{dd}, 1\text{H}, J = 9.6, 9.6 \text{ Hz}), 5.09 (\text{dd}, 1\text{H}, J = 9.9, 9.6 \text{ Hz}), 5.32 (\text{dd}, 1\text{H}, J = 9.3, 9.3 \text{ Hz}), 5.34 (\text{dd}, 1\text{H}, J = 9.6, 9.6 \text{ Hz}) (1,2,3,4\text{-H}), 7.07 (\text{d}, 1\text{H}, J = 9.3 \text{ Hz}, 1\text{-NH}), 7.39 (\text{d}, 1\text{H}, J = 7.8 \text{ Hz}, \text{NH}^{\text{Ala}}) \text{ppm}; ^{13}\text{C} \text{NMR} (\text{CDCl}_3, 75 \text{ MHz}, \text{APT}): \delta = 15.51 (\text{CH}_3^{\text{Ala}}), 20.67 (2\text{c}), 20.72, 20.82 (40\text{Ac}), 28.04 (\text{CH}_3^{\text{tBu}}), 39.57 (\text{CH}_2^{\text{Mal}}), 48.56 (\text{CH}^{\text{Ala}}), 61.77 (6\text{-CH}_2), 68.20, 68.87, 70.60, 72.86, 73.73 (2,3,4,5\text{-CH}, \text{CH}^{\text{Mal}}), 77.92 (1\text{-CH}), 82.16 (\text{C}^{\text{tBu}}), 169.64, 170.09, 170.76, 171.10, 171.88, 171.91, 172.50 \text{ ppm}; \text{IR} (\text{KBr}): \bar{\nu} = 3400, 1753, 1668, 1533 \text{ cm}^{-1}; \text{MS} (\text{FAB}): m/z = 591.2 [\text{M} + \text{H}]^+.$

tert-Butyl N-{(2S)-1,4-dioxo-2-hydroxy-4-[(2,3,4,6-tetra-O-acetyl- β -D-glucopyranosyl)amino]butyl}valinate (**9a**/**3**, C₂₇H₄₂N₂O₁₄)

6a (611 mg, 1.00 mmol) and HCl^{*}H-*Val*-O'*Bu* (252 mg, 1.20 mmol) were reacted in the presence of *NEM* (138 mg, 1.20 mmol) due to protocol 4. Reaction time: 2 d. Purification by flash chromatography (CHCl₃/petroleum ether/*Me*OH = 10/5/1). Yield 48 mg (11%) **7a** ($R_{\rm f}$ =0.33) and 440 mg (71%) **9a/3** ($R_{\rm f}$ =0.26), foam, [α]_D = +5° cm³g⁻¹ dm⁻¹ (c = 1.2, CHCl₃); ¹H NMR (CDCl₃, 300 MHz): δ = 0.93 (d, 3H, J = 6.9 Hz, γ -CH₃^{Val}), 0.95 (d, 3H, J = 6.6 Hz, γ' -CH₃^{Val}), 1.49 (s, 9H, CH₃^{HB}), 2.03 (s, 3H), 2.05 (s, 3H), 2.09 (s, 3H), 2.10 (s, 3H) (4OAc), 2.20 (m, 1H, β -CH^{Val}), 2.58 (dd, 1H, J = 7.8, 15.9 Hz, CH₂^{Mal}), 2.86 (dd, 1H, J = 3.3, 15.9 Hz, CH₂^{Mal}), 3.87 (m, 1H, 5-H), 4.10 (dd, 1H, J = 1.8, 12.3 Hz, 6-H_a), 4.31 (dd, 1H, J = 4.2, 12.3 Hz, 6-H_b), 4.39–4.43 (m, 2H, α -CH^{Val}, CH^{Mal}), 4.55 (br.s, 1H, OH), 4.96 (dd, 1H, J = 9.6, 9.6 Hz), 5.08 (dd, 1H, J = 9.6, 9.9 Hz), 5.29 (dd, 1H, J = 9.0, 9.3 Hz), 5.37 (dd, 1H, J = 9.6, 9.6 Hz) (1,2,3,4-H), 6.89 (d, 1H, J = 9.3 Hz, 1-NH), 7.29 (d, 1H, J = 9.0 Hz, NH^{Val}) ppm; ¹³C NMR (CDCl₃, 75 MHz, APT): δ = 17.60 (γ -CH₃^{Val}), 19.03 (γ' -CH₃^{Val}), 20.66 (2c), 20.74, 20.81 (4OAc), 28.12 (CH₃^{HB}), 31.51 (β -CH^{Val}), 39.39 (CH₂^{Mal}), 57.30 (α -CH^{Val}), 61.72 (6-CH₂), 68.18, 69.13, 70.52, 72.80, 73.70 (2,3,4,5-CH, CH^{Mal}), 77.93 (1-CH), 82.13 (C^{HB}), 169.62, 170.07, 170.68, 170.75, 171.19, 172.22, 172.71 ppm; IR (KBr): $\bar{\nu}$ = 3400, 1753, 1672, 1526 cm⁻¹; MS (FAB): m/z = 619.3 [M + H]⁺.

tert-Butyl N-{(2S)-1,4-dioxo-2-hydroxy-4-[(2,3,4,6-tetra-O-acetyl- β -D-glucopyranosyl)amino]butyl}phenylalaninate (**9a**/**4**, C₃₁H₄₂N₂O₁₄)

6a (306 mg, 0.50 mmol) and HCl*H-*Phe*-O'*Bu* (155 mg, 0.60 mmol) were reacted in the presence of *NEM* (69 mg, 0.6 mmol) due to protocol 4. Reaction time: 2 d. Purification by flash chromatography (CHCl₃/*Me*OH = 10/1). Yield 22 mg (10%) **7a** (R_f = 0.30) and 233 mg (70%) **9a**/4 (R_f = 0.21), foam, [α]_D = +23° cm³ g⁻¹ dm⁻¹ (*c* = 1.2, CHCl₃); ¹H NMR (CDCl₃, 300 MHz, COSY): δ = 1.49 (s, 9H, CH₃^{tBu}), 1.99 (s, 3H), 2.00 (s, 3H), 2.04 (s, 3H), 2.05 (s, 3H) (4OAc), 2.39 (dd, 1H, *J* = 8.3, 15.9 Hz, CH₂^{Mal}), 2.74 (dd, 1H, *J* = 3.3, 15.9 Hz, CH₂^{Mal}), 3.03-3.07 (m, 2H, β -CH₂^{Phe}), 3.84 (ddd, 1H, *J* = 2.1, 4.2, 9.9 Hz, 5-H), 4.05 (dd, 1H, *J* = 2.1, 12.3 Hz, 6-H_a), 4.27 (dd, 1H, *J* = 4.2, 12.3 Hz, 6-H_b), 4.35 (m, 1H, CH^{Mal}), 4.45 (d, 1H, *J* = 6.0 Hz, OH), 4.69 (m, 1H, α -CH^{Phe}), 4.93 (dd, 1H, *J* = 9.6, 9.6 Hz, 2-H), 5.05 (dd, 1H, *J* = 9.3 Hz, 1-NH), 7.13-7.30 (m, 6H, H^{arom}, NH^{Phe}) ppm; ¹³C NMR (CDCl₃, 75 MHz, HET-COR): δ = 20.83 (2c), 20.91, 20.99 (4OAc), 28.18 (CH₃^{tBu}), 38.46 (β -CH₂^{Phe}), 39.58 (CH₂^{Mal}), 53.57 (α -CH^{Phe}), 61.90 (6-CH₂), 68.34 (4-CH), 69.10 (CH^{Mal}), 70.74 (2-CH), 72.97 (3-CH), 73.88 (5-CH), 78.10 (1-CH), 82.69 (C^{tBu}), 127.28, 128.68, 129.76, 136.28 (C^{arom}), 169.81, 170.23, 170.51, 170.93, 171.34, 172.02, 172.65 ppm; IR (KBr): $\bar{\nu}$ = 3400, 1749, 1670, 1525 cm⁻¹; MS (FAB): *m*/*z* = 667.3 [M + H]⁺.

tert-Butyl N-{(2S)-1,4-dioxo-2-hydroxy-4-[(2,3,4,6-tetra-O-acetyl- β -D-glucopyranosyl)-amino]butyl}prolinate (**9a/5**, C₂₇H₄₀N₂O₁₄)

6a (611 mg, 1.00 mmol) and HCl*H-*Pro*-O'*Bu* (249 mg, 1.20 mmol) were reacted in the presence of *NEM* (138 mg, 1.20 mmol) due to protocol 4. Reaction time: 2 d. Purification by flash chromato-

graphy (ethyl acetate, $R_f = 0.29$). Yield 442 mg (72%), foam, $[\alpha]_D = -40^{\circ} \text{ cm}^3 \text{ g}^{-1} \text{ dm}^{-1}$ (c = 1.1, CHCl₃); ¹H NMR (CDCl₃, 300 MHz, 298 K, COSY): rotamers, ratio 5:1, δ (major rotamer) = 1.41 (s, 9H, CH₃^{tBu}), 1.99 (s, 3H), 2.01 (s, 3H), 2.03 (s, 3H), 2.06 (s, 3H) (4OAc), 1.85–2.25 (m, 4H, γ,β -CH₂^{Pro}), 2.35 (dd, 1H, J = 9.3, 14.4 Hz, CH₂^{Mal}), 2.54 (dd, 1H, J = 3.0, 14.4 Hz, CH₂^{Mal}), 3.48–3.63 (m, 2H, δ -CH₂^{Pro}), 3.82 (m, 1H, 5-H), 3.97 (d, 1H, J = 7.8 Hz, OH), 4.07 (dd, 1H, J = 2.4, 12.6 Hz, 6-H_a), 4.25 (dd, 1H, J = 4.2, 12.6 Hz, 6-H_b), 4.42 (m, 1H, α -CH^{Pro}), 4.58 (m, 1H, CH^{Mal}), 4.99 (dd, 1H, J = 9.6, 9.6 Hz, 4-H), 5.27 (dd, 1H, J = 9.3, 9.0 Hz, 1-H), 5.31 (dd, 1H, J = 9.6, 9.6 Hz, 3-H), 7.38 (d, 1H, J = 9.0 Hz, 1-NH) ppm; ¹³C NMR (CDCl₃, 75 MHz, HETCOR): δ (major rotamer) = 20.85 (2c), 20.93, 20.98 (4OAc), 25.08 (γ -CH₂^{Pro}), 28.18 (CH₃^{tBu}), 29.05 (β -CH₂^{Pro}), 41.82 (CH₂^{Mal}), 46.92 (δ -CH₂^{Pro}), 60.07 (α -CH^{Pro}), 62.15 (6-CH₂), 67.41 (CH^{Mal}), 68.48 (4-CH), 70.43 (2-CH), 73.26 (3-CH), 73.83 (5-CH), 78.23 (1-CH), 81.94 (C^{tBu}), 169.83, 170.21, 170.83, 170.88, 171.12, 171.20, 171.71 ppm; IR (KBr): $\bar{\nu} = 3400$, 1749, 1691, 1643, 1541 cm⁻¹; MS (FAB): m/z = 617.1 [M + H]⁺.

N-{(2S)-1,4-Dioxo-2-hydroxy-4-[(2,3,4,6-tetra-O-acetyl- β -D-glucopyranosyl)amino]butyl}-phenylalanine amide (**9a**/**6**, C₂₇H₃₅N₃O₁₃)

6a (306 mg, 0.50 mmol) and HCl*H-*Phe*-NH₂ (121 mg, 0.60 mmol) were reacted in the presence of *NEM* (69 mg, 0.60 mmol) due to protocol 4. Reaction time: 2 d. Purification by flash chromatography (CHCl₃/*Me*OH = 20/3, $R_{\rm f}$ = 0.30). Yield: 244 mg (80%), foam, [α]_D = +17° cm³g⁻¹ dm⁻¹ (*c* = 1.2, CHCl₃); ¹H NMR (CDCl₃, 300 MHz): δ = 2.04 (s, 3H), 2.05 (s, 3H), 2.06 (s, 6H) (4OAc), 2.22 (dd, 1H, *J* = 9.6, 15.9 Hz, CH₂^{Mal}), 2.65 (dd, 1H, *J* = 3.0, 15.9 Hz, CH₂^{Mal}), 3.04 (dd, 1H, *J* = 7.5, 13.8 Hz, β-CH₂^{Phe}), 3.15 (dd, 1H, *J* = 6.0, 13.8 Hz, β-CH₂^{Phe}), 3.86 (m, 1H, 5-H), 4.12 (dd, 1H, *J* = 1.8, 12.6 Hz, 6-H_a), 4.30 (dd, 1H, *J* = 4.5, 12.6 Hz, 6-H_b), 4.38 (m, 1H, CH^{Mal}), 4.66 (m, 1H, α-CH^{Phe}), 5.00 (dd, 1H, *J* = 9.6, 9.6 Hz), 5.11 (dd, 1H, *J* = 9.9, 9.6 Hz), 5.30 (dd, 1H, *J* = 9.3, 9.3 Hz), 5.34 (dd, 1H, *J* = 9.6, 9.6 Hz) (4,3,2,1-H), 6.46 (s, 1H, CONH₂), 6.60 (s, 1H, CONH₂), 7.23–7.35 (m, 5H, H^{arom}), 7.53 (d, 1H, *J* = 9.3, 16.4 (d), 1H, *J* = 8.4 Hz, NH^{Phe}) ppm; ¹³C NMR (CDCl₃, 75 MHz): δ = 20.84 (2c), 20.95 (2c) (4OAc), 38.22 (β-CH₂^{Phe}), 40.09 (CH₂^{Mal}), 54.26 (α-CH^{Phe}), 61.95 (6-CH₂), 68.35, 68.88, 70.75, 73.17, 73.89 (CH^{Mal}, 5,4,3,2-CH), 78.04 (1-CH), 127.43, 128.97, 129.54, 136.50 (C^{arom}), 169.91, 170.27, 171.05, 171.32, 172.49, 173.50, 172.25 ppm; IR (KBr): $\bar{\nu}$ = 3400, 1749, 1668, 1527 cm⁻¹; MS (FAB): *m*/*z* = 610.3

tert-Butyl N-{(2S)-1,4-dioxo-2-hydroxy-2-methyl-4-[(2,3,4,6-tetra-O-acetyl- β -D-glucopyranosyl)amino]butyl}glycinate (**9b/1**, C₂₅H₃₈N₂O₁₄)

6b (625 mg, 1.00 mmol) and HCl^{*}H-*Gly*-O'*Bu* (201 mg, 1.20 mmol) were reacted in the presence of *NEM* (138 mg, 1.20 mmol) due to protocol 4. Reaction time: 1 d. Purification by flash chromatography (ethyl acetate/petroleum ether = 5/1). Yield 74 mg (16%) **7b** (R_f =0.30) and 369 mg (62%) **9b/1** (R_f =0.19), foam, [α]_D = +25° cm³ g⁻¹ dm⁻¹ (*c* = 2.0, CHCl₃); ¹H NMR (CDCl₃, 300 MHz, COSY): δ = 1.36 (s, 3H, CH₃^{Citr}), 1.45 (s, 9H, CH₃^{tBu}), 1.98 (s, 3H), 2.00 (s, 3H), 2.05 (s, 3H), 2.07 (s, 3H) (4OAc), 2.43 (d, 1H, *J* = 15.3 Hz, CH₂^{Citr}), 2.85 (d, 1H, *J* = 15.3 Hz, CH₂^{Citr}), 3.78 (ddd, 1H, *J* = 1.8, 4.2, 9.9 Hz, 5-H), 3.79 (dd, *J* = 5.4, 18.0 Hz, CH₂^{Gly}), 3.89 (dd, 1H, *J* = 5.4, 18.0 Hz, CH₂^{Gly}), 4.05 (dd, 1H, *J* = 1.8, 12.3 Hz, 6-H_a), 4.26 (dd, 1H, *J* = 4.2, 12.3 Hz, 6-H_b), 4.92 (dd, 1H, *J* = 9.6, 9.6 Hz, 2-H), 5.03 (dd, 1H, *J* = 5.4 Hz, NH^{Gly}) ppm; ¹³C NMR (CDCl₃, 75 MHz, HETCOR): δ = 20.83 (2c), 20.90, 20.99 (4OAc), 26.76 (CH₃^{Citr}), 28.30 (CH₃^{tBu}), 42.10 (CH₂^{Gly}), 43.54 (CH₂^{Citr}), 61.92 (6-CH₂), 68.29 (4-CH), 70.43 (2-CH), 73.00 (3-CH), 73.92 (5-CH), 74.81 (C^{Citr}), 77.91 (1-CH), 82.55 (C^{tBu}), 168.81, 169.76, 170.20, 170.90, 171.42, 172.42, 175.85 ppm; IR (KBr): $\bar{\nu}$ = 3400, 1751, 1670, 1533 cm⁻¹; MS (FAB): m/z = 591.2 [M + H]⁺.

tert-Butyl N-{(2S)-1,4-dioxo-2-hydroxy-2-methyl-4-[(2,3,4,6-tetra-O-acetyl- β -D-glucopyra-nosyl)amino]butyl}alaninate (**9b**/**2**, C₂₆H₄₀N₂O₁₄)

6b (625 mg, 1.00 mmol) and HCl*H-*Ala*-O'*Bu* (218 mg, 1.20 mmol) were reacted in the presence of *NEM* (138 mg, 1.20 mmol) due to protocol 4. Reaction time: 2 d. Purification by flash chromatography (CHCl₃/petroleum ether/*Me*OH = 10/5/1). Yield 276 mg (46%) **9b/2** (R_f = 0.36), foam, [α]_D = +22° cm³ g⁻¹ dm⁻¹ (c = 1.5, CHCl₃) and 119 mg (26%) **7b** (R_f = 0.26).

9b/2^{:1}H NMR (CDCl₃, 300 MHz, COSY): $\delta = 1.33$ (d, 3H, J = 7.2 Hz, CH₃^{Ala}), 1.35 (s, 3H, CH₃^{Citr}), 1.43 (s, 9H, CH₃^{tBu}), 1.99 (s, 3H), 2.00 (s, 3H), 2.06 (s, 3H), 2.12 (s, 3H) (4OAc), 2.42 (d, 1H, J = 15.3 Hz, CH₂^{Citr}), 2.81 (d, 1H, J = 15.3 Hz, CH₂^{Citr}), 3.77 (ddd, 1H, J = 2.1, 4.2, 9.9 Hz, 5-H), 4.05 (dd, 1H, J = 2.1, 12.3 Hz, 6-H_a), 4.24–4.30 (m, 2H, α -CH^{Ala}, 6-H_b), 4.92 (dd, 1H, J = 9.6, 9.6 Hz, 2-H), 5.04 (dd, 1H, J = 9.6, 9.6 Hz, 4-H), 5.17 (s, 1H, OH), 5.18 (dd, 1H, J = 9.0, 9.3 Hz, 1-H), 5.28 (dd, 1H, J = 9.6, 9.3 Hz, 3-H), 6.81 (d, 1H, J = 9.0 Hz, 1-NH), 7.23 (d, 1H, J = 7.5 Hz, NH^{Ala}) ppm; ¹³C NMR (CDCl₃, 75 MHz, APT): $\delta = 18.39$ (CH₃^{Ala}), 20.68 (2c), 20.73, 20.83 (4OAc), 26.23 (CH₃^{Citr}), 28.05 (CH₃^{IBu}), 43.18 (CH₂^{Citr}), 48.66 (α -CH^{Ala}), 61.69 (6-CH₂), 68.15, 70.20, 72.65, 73.78 (2,3,4,5-CH), 74.68 (C^{Citr}), 77.84 (1-CH), 81.92 (C^{IBu}), 169.61, 170.05, 170.72, 171.53, 171.71, 173.52, 174.94 ppm; IR (KBr): $\bar{\nu} = 3400$, 1751, 1666, 1533 cm⁻¹; MS (FAB): m/z = 605.2 [M + H]⁺.

tert-Butyl N-{(2S)-1,4-dioxo-2-hydroxy-2-methyl-4-[(2,3,4,6-tetra-O-acetyl- β -D-glucopyranosyl)amino]butyl}valinate (**9b**/**3**, C₂₈H₄₄N₂O₁₄)

6b (312 mg, 0.50 mmol) and HCl*H-*Val*-O'*Bu* (126 mg, 0.60 mmol) were reacted in the presence of *NEM* (69 mg, 0.60 mmol) due to protocol 4. Reaction time: 2 d. Purification by flash chromatography (CHCl₃/petroleum ether/*Me*OH=10/3/1). Yield 149 mg (47%) **9b/3** ($R_{\rm f}$ =0.38), foamy solid, [α]_D=+23° cm³g⁻¹ dm⁻¹ (*c*=1.6, CHCl₃) and 80 mg (34%) **7b** ($R_{\rm f}$ =0.24).

9b/3: ¹H NMR (CDCl₃, 300 MHz): $\delta = 0.92$ (d, 3H, J = 6.9 Hz, γ -CH₃^{Val}), 0.93 (d, 3H, J = 6.9 Hz, γ' -CH₃^{Val}), 1.39 (s, 3H, CH₃^{Citr}), 1.48 (s, 9H, CH₃^{tBu}), 2.04 (s, 3H), 2.05 (s, 3H), 2.10 (s, 3H), 2.17 (s, 3H) (4OAc), 2.18 (m, 1H, β -CH^{Val}), 2.45 (d, 1H, J = 15.3 Hz, CH₂^{Citr}), 2.86 (d, 1H, J = 15.3 Hz, CH₂^{Citr}), 3.82 (m, 1H, 5-H), 4.09 (dd, 1H, J = 2.1, 12.3 Hz, 6-H_a), 4.27–4.35 (m, 2H, α -CH^{Val}, 6-H_b), 4.96 (dd, 1H, J = 9.6, 9.6 Hz, 2-H), 5.08 (dd, 1H, J = 9.6, 9.9 Hz, 4-H), 5.16 (dd, 1H, J = 9.0, 9.3 Hz, 1-H), 5.31 (dd, 1H, J = 9.6, 9.3 Hz, 3-H), 5.35 (s, 1H, OH), 6.73 (d, 1H, J = 8.7 Hz, NH^{Val}), 7.25 (d, 1H, J = 9.3 Hz, 1-NH) ppm; ¹³C NMR (CDCl₃, 75 MHz, APT): $\delta = 17.47$ (γ -CH₃^{Val}), 19.07 (γ' -CH₃^{Val}), 20.70 (2c), 20.80, 20.84 (4OAc), 26.26 (CH₃^{Citr}), 28.14 (CH₃^{tBu}), 31.42 (β -CH^{Val}), 43.17 (CH₂^{Citr}), 57.42 (α -CH^{Val}), 61.66 (6-CH₂), 68.19, 70.09, 72.58, 73.72 (2,3,4,5-CH), 75.07 (C^{Citr}), 77.97 (1-CH), 81.95 (C^{tBu}), 169.63, 170.08, 170.56, 170.73, 171.83, 173.77, 175.19 ppm; IR (KBr): $\bar{\nu} = 3400$, 1751, 1668, 1524 cm⁻¹; MS (FAB): m/z = 633.3 [M + H]⁺.

tert-Butyl N-{(2S)-1,4-dioxo-2-hydroxy-2-methyl-4-[(2,3,4,6-tetra-O-acetyl- β -D-glucopyranosyl)amino]butyl}phenylalaninate (**9b**/**4**, C₃₂H₄₄N₂O₁₄)

6b (625 mg, 1.00 mmol) and HCl*H-*Phe*-O'Bu (309 mg, 1.20 mmol) were reacted in the presence of *NEM* (138 mg, 1.20 mmol) due to protocol 4. Reaction time: 2 d. Purification by flash chromatography (CHCl₃/petroleum ether/*Me*OH=10/5/1). Yield 290 mg (43%) **9b/4** (R_f =0.36), foamy solid, [α]_D=+43° cm³g⁻¹ dm⁻¹ (c=1.6, CHCl₃) and 180 mg (39%) **7b** (R_f =0.25).

9b/4: ¹H NMR (CDCl₃, 300 MHz): $\delta = 1.35$ (s, 3H, CH₃^{Citr}), 1.39 (s, 9H, CH₃^{tBu}), 2.02 (s, 3H), 2.04 (s, 3H), 2.08 (s, 3H), 2.11 (s, 3H) (4OAc), 2.44 (d, 1H, J = 15.6 Hz, CH₂^{Citr}), 2.79 (d, 1H, J = 15.6 Hz, CH₂^{Citr}), 2.99–3.15 (m, 2H, β -CH₂^{Phe}), 3.82 (m, 1H, 5-H), 4.08 (dd, 1H, J = 1.5, 12.6 Hz, 6-H_a), 4.32 (dd, 1H, J = 4.2, 12.6 Hz, 6-H_b), 4.62 (m, 1H, α -CH^{Phe}), 4.96 (dd, 1H, J = 9.6, 9.9 Hz, 4-H), 5.19 (dd, 1H, J = 9.3, 9.3 Hz, 1-H), 5.29 (s, 1H, OH), 5.31 (dd, 1H, J = 9.6, 9.3 Hz, 3-H), 6.64 (d, 1H, J = 9.0 Hz, 1-NH), 7.21–7.36 (m, 6H, NH^{Phe}, H^{arom}) ppm; ¹³C NMR (CDCl₃, 75 MHz, APT): $\delta = 20.62$, 20.64, 20.69, 20.78 (4OAc), 26.19 (CH₃^{Citr}), 27.98

(CH₃^{tBu}), 38.18 (β -CH₂^{Phe}), 42.93 (CH₂^{Citr}), 53.51 (α -CH^{Phe}), 61.68 (6-CH₂), 68.11, 70.13, 72.67, 73.71 (2,3,4,5-CH), 74.66 (C^{Citr}), 77.72 (1-CH), 82.25 (C^{tBu}), 127.07, 128.55, 129.58, 136.13 (C^{arom}), 169.57, 169.98, 170.05, 170.69, 171.38, 173.45, 174.85 ppm; IR (KBr): $\bar{\nu}$ = 3400, 1755, 1672, 1521 cm⁻¹; MS (FAB): m/z = 681.3 [M + H]⁺.

N-{(2S)-1,4-Dioxo-2-hydroxy-2-methyl-4-[(2,3,4,6-tetra-O-acetyl- β -D-glucopyranosyl)amino]butyl}phenylalanine amide (**9b**/**5**, C₂₈H₃₇N₃O₁₃)

6b (625 mg, 1.00 mmol) and HCl*H-*Phe*-NH₂ (241 mg, 1.20 mmol) were reacted in the presence of *NEM* (138 mg, 1.20 mmol) due to protocol 4. Reaction time: 2 d. Purification by flash chromatography (gradient elution, CHCl₃/*Me*OH = 15/1 → 10/1). Yield 150 mg (33%) **7b** (*R*_f = 0.60) and 290 mg (47%) **9b/5** (*R*_f = 0.15), foamy solid, [α]_D = +3° cm³g⁻¹ dm⁻¹ (*c* = 1.5, CHCl₃); ¹H NMR (CDCl₃, 300 MHz): δ = 1.30 (s, 3H, CH₃^{Citr}), 2.00 (s, 3H), 2.02 (s, 3H), 2.05 (s, 3H), 2.07 (s, 3H) (4OAc), 2.44 (d, 1H, *J* = 15.6Hz, CH₂^{Citr}), 2.71 (d, 1H, *J* = 15.6Hz, CH₂^{Citr}), 3.11–3.16 (m, 2H, β-CH₂^{Phe}), 3.81 (m, 1H, 5-H), 4.06 (dd, 1H, *J* = 1.8, 12.6Hz, 6-H_a), 4.29 (dd, 1H, *J* = 4.2, 12.6Hz, 6-H_b), 4.46 (m, 1H, α-CH^{Phe}), 4.92 (dd, 1H, *J* = 9.6, 9.6Hz, 2-H), 5.05 (dd, 1H, *J* = 9.6, 9.9Hz, 4-H), 5.16 (dd, 1H, *J* = 9.3, 9.3 Hz, 1-H), 5.21 (s, 1H, OH), 5.29 (dd, 1H, *J* = 9.6, 9.6 Hz, 3-H), 5.84 (s, 1H, NH₂^{Phe}), 6.06 (s, 1H, NH₂^{Phe}), 7.15 (d, 1H, *J* = 9.0 Hz, 1-NH), 7.21–7.34 (m, 5H, H^{arom}), 7.42 (d, 1H, *J* = 8.4 Hz, NH^{Phe}) ppm; ¹³C NMR (CDCl₃, 75 MHz, APT): δ = 20.86 (2c), 20.93, 20.97 (4OAc), 26.04 (CH₃^{Citr}), 37.51 (β-CH₂^{Phe}), 43.40 (CH₂^{Citr}), 54.76 (α-CH^{Phe}), 61.89 (6-CH₂), 68.31, 70.50, 73.08, 73.89 (2,3,4,5-CH), 74.62 (C^{Citr}), 77.78 (1-CH), 127.30, 128.99, 129.57, 137.05 (C^{arom}), 169.85, 170.24, 170.91, 171.41, 173.33 (2c), 175.95 ppm; IR (KBr): $\bar{\nu}$ = 3400, 1751, 1670, 1522 cm⁻¹; MS (FAB): *m*/*z* = 624.2 [M + H]⁺.

tert-Butyl N-{(2S)-1,4-dioxo-2-hydroxy-4-[(2,3,4,6-tetra-O-benzyl- β -D-glucopyranosyl)amino]butyl}phenylalaninate (**9c**/**1**, C₅₁H₅₈N₂O₁₀)

6c (804 mg, 1.00 mmol) and HCl*H-*Phe*-O'*Bu* (309 mg, 1.20 mmol) were reacted in the presence of *NEM* (138 mg, 1.20 mmol) due to protocol 4. Reaction time: 2 d. Purification by flash chromatography (ethyl acetate/petroleum ether = 3/2, R_f = 0.29). Yield 669 mg (78%), thin needles, mp 128–130°C, $[\alpha]_D = +1^{\circ} \text{ cm}^3 \text{ g}^{-1} \text{ dm}^{-1}$ (*c* = 1.4, CHCl₃); ¹H NMR (CDCl₃, 300 MHz, COSY): δ = 1.40 (s, 9H, CH₃^{tBu}), 2.30 (dd, 1H, *J* = 8.2, 16.1 Hz, CH₂^{Mal}), 2.66 (dd, 1H, *J* = 3.6, 16.1 Hz, CH₂^{Mal}), 3.08–3.12 (m, 2H, β-CH₂^{Phe}), 3.40 (m, 1H, 2-H), 3.54 (m, 1H, 5-H), 3.68–3.75 (m, 4H, 3,4-H, 6-H₂), 4.38 (m, 1H, CH^{Mal}), 4.44 (d, 1H, *J* = 12.3 Hz, CH₂Ph), 4.50 (d, 1H, *J* = 11.1 Hz, CH₂Ph), 4.60 (d, 1H, *J* = 12.3 Hz, CH₂Ph), 4.61 (br.s, 1H, OH), 4.68 (d, 1H, *J* = 12.0 Hz, CH₂Ph), 4.70 (m, 1H, α-CH^{Phe}), 4.81 (d, 1H, *J* = 11.1 Hz, CH₂Ph), 4.83 (d, 1H, *J* = 12.0 Hz, CH₂Ph), 4.90 (s, 2H, CH₂Ph), 5.08 (dd, 1H, *J* = 9.3, 9.3 Hz, 1-H), 5.96 (d, 1H, *J* = 9.3 Hz, 1-NH), 7.17–7.42 (m, 26H, NH^{Phe}, H^{arom}) ppm; ¹³C NMR (CDCl₃, 75 MHz, HETCOR, APT): δ = 28.22 (CH₃^{tBu}), 38.57 (β-CH₂^{Phe}), 39.17 (CH₂^{Mal}), 53.62 (α-CH^{Phe}), 68.32 (6-CH₂), 68.98 (CH^{Mal}), 73.86, 74.87, 75.25, 76.04 (4CH₂Ph), 76.70 (5-CH), 77.77 (4-CH), 78.91 (1-CH), 79.71 (2-CH), 82.58 (Ct^{IBu}), 86.34 (3-CH), 127.2–129.9, 136.43, 137.98, 138.09, 138.28, 138.59 (C^{arom}), 170.47, 172.03, 172.54 ppm; IR (KBr): $\bar{\nu}$ = 3400, 1730, 1662, 1525 cm⁻¹; MS (FAB): *m*/*z* = 859.4 [M + H]⁺.

tert-Butyl N-{(2S)-1,4-dioxo-2-hydroxy-4-[(2,3,4,6-tetra-O-benzyl- β -D-glucopyranosyl)-amino]butyl}prolinate (**9c**/**2**, C₄₇H₅₆N₂O₁₀)

6c (402 mg, 0.50 mmol) and HCl*H-*Pro*-O'*Bu* (125 mg, 0.60 mmol) were reacted in the presence of *NEM* (69 mg, 0.60 mmol) due to protocol 4. Reaction time: 2 d. Purification by flash chromatography (ethyl acetate/petroleum ether=2/1, R_f =0.23). Yield 298 mg (74%), foamy solid, $[\alpha]_D$ = -21° cm³g⁻¹ dm⁻¹ (c=1.1, CHCl₃); ¹H NMR (CDCl₃, 300 MHz, 298 K, COSY): rotamers,

ratio 5:1, δ (major rotamer) = 1.49 (s, 9H, CH₃^{tBu}), 1.82–2.24 (m, 4H, β , γ -CH₂^{Pro}), 2.45 (dd, 1H, J = 8.7, 14.8 Hz, CH₂^{Mal}), 2.57 (dd, 1H, J = 3.6, 14.8 Hz, CH₂^{Mal}), 3.38–3.51 (m, 3H, 2-H, δ-CH₂^{Pro}), 3.55 (m, 1H, 5-H), 3.68–3.75 (m, 4H, 3,4-H, 6-H₂), 4.08 (d, 1H, J = 7.4 Hz, OH), 4.43 (dd, 1H, J = 5.1, 8.4 Hz, α -CH^{Pro}), 4.50 (d, 1H, J = 12.0 Hz, CH₂Ph), 4.52 (m, 1H, CH^{Mal}), 4.58 (d, 1H, J = 10.8 Hz, CH₂Ph), 4.64 (d, 1H, J = 12.0 Hz, CH₂Ph), 4.84–4.89 (m, 3H, CH₂Ph), 4.91 (d, 1H, J = 11.1 Hz, CH₂Ph), 4.96 (d, 1H, J = 11.1 Hz, CH₂Ph), 5.25 (dd, 1H, J = 9.3 Hz, 1-H), 7.10 (d, 1H, J = 9.3 Hz, 1-NH), 7.29–7.41 (m, 20H, H^{arom}) ppm; ¹³C NMR (CDCl₃, 75 MHz, APT): δ (major rotamer) = 25.13 (γ -CH₂^{Pro}), 28.28 (CH₃^{tBu}), 29.11 (β -CH₂^{Pro}), 42.26 (CH₂^{Mal}), 46.95 (δ -CH₂^{Pro}), 60.24 (α -CH^{Pro}), 67.00 (CH^{Mal}), 68.66 (6-CH₂), 73.77, 75.05, 75.24, 75.95 (4CH₂Ph), 76.62, 77.86, 79.33, 81.26 (5,4,2,1-CH), 82.05 (C^{tBu}), 86.15 (3-CH), 127.97–128.84, 138.12, 138.41, 138.57, 138.75 (C^{arom}), 170.88, 171.05, 171.60 ppm; IR (KBr): $\bar{\nu}$ = 3400, 1737, 1647, 1542 cm⁻¹; MS (FAB): m/z = 809.4 [M + H]⁺.

tert-Butyl N-{(2S)-1,4-dioxo-2-hydroxy-4-[(2,3,4,6-tetra-O-benzyl- β -D-glucopyranosyl)amino]butyl}phenylalanylalaninate (**9c**/**3**, C₅₄H₆₃N₃O₁₁)

A solution of Z-Phe-Ala-O'Bu (277 mg, 0.65 mmol) in ethyl acetate (40 cm³) was vigorously stirred for 4 h in an atmosphere of hydrogen in the presence of 100 mg of 10% Pd/C catalyst. After filtration and removal of the solvent *in vacuo* the remaining residue was reacted with 6c (434 mg, 0.54 mmol) in the presence of NEM (75 mg, 0.65 mmol) due to protocol 4. Reaction time: 3 d. Purification by flash chromatography (ethyl acetate/petroleum ether = 5/2, $R_f = 0.27$). Yield 336 mg (67%), needles, mp $171-173^{\circ}$ C, $[\alpha]_{D} = -21^{\circ}$ cm³ g⁻¹ dm⁻¹ (c = 2.7, CHCl₃); ¹H NMR (CDCl₃, 300 MHz, COSY): $\delta = 1.31$ (d, 3H, J = 7.2 Hz, CH₃^{Ala}), 1.44 (s, 9H, CH₃^{tBu}), 2.17 (dd, 1H, J = 8.7, 15.9 Hz, CH₂^{Mal}), 2.59 (dd, 1H, J = 3.6, 15.9 Hz, CH₂^{Mal}), 3.01–3.15 (m, 2H, β -CH₂^{Phe}), 3.36 (dd, 1H, J = 9.0, 9.0 Hz, 2-H), 3.51 (m, 1H, 5-H), 3.64–3.77 (m, 4H, 3,4-H, 6-H₂), 4.32–4.37 (m, 2H, CH^{Mal}, α -CH^{Ala}), 4.43 (d, 1H, J = 12.3 Hz, CH₂Ph), 4.49 (d, 1H, J = 10.8 Hz, CH₂Ph), 4.57 (d, 1H, J = 12.3 Hz, CH₂Ph), 4.60 (m, 1H, α -CH^{Phe}), 4.65 (d, 1H, J = 12.0 Hz, CH₂Ph), 4.79 (d, 1H, J = 10.8 Hz, CH₂Ph), 4.80 (d, 1H, J = 12.0 Hz, CH₂Ph), 4.89 (s, 2H, CH₂Ph), 5.03 (dd, 1H, J = 9.0, 9.3 Hz, 1-H), 5.90 (d, 1H, J = 9.0 Hz, 1-NH), 6.49 (d, 1H, J = 6.9 Hz, NH^{Ala}), 7.10–7.36 (m, 26H, NH^{Phe}, H^{arom}) ppm; ¹³C NMR (CDCl₃, 75 MHz, APT): $\delta = 18.64$ (CH₃^{Ala}), 28.23 (CH₃^{tBu}), 38.43 (β -CH₂^{Phe}), 39.46 (CH₂^{Mal}), 49.10 (α -CH^{Ala}), 54.31 (α-CH^{Phe}), 68.37 (6-CH₂), 68.97 (CH^{Mal}), 73.78, 74.93, 75.24, 76.03 (4CH₂Ph), 76.68, 77.80, 79.00, 80.09 (5,4,2,1-CH), 82.28 (CtBu), 86.24 (3-CH), 127.2-129.7, 136.69, 137.91, 138.14, 138.27, 138.59 (C^{arom}), 170.25, 171.99, 172.34, 172.81 ppm; IR (KBr): $\bar{\nu} = 3400, 1736, 1645,$ 1544 cm⁻¹; MS (FAB): m/z = 952.4 [M + Na]⁺, 930.4 [M + H]⁺.

tert-Butyl N-{(2S)-1,4-dioxo-2-hydroxy-2-methyl-4-[(2,3,4,6-tetra-O-benzyl- β -D-glucopyra-nosyl)amino]butyl}phenylalaninate (**9d**/**1**, C₅₂H₆₀N₂O₁₀)

6d (409 mg, 0.50 mmol) and HCl*H-*Phe*-O^{*t*}*Bu* (155 mg, 0.60 mmol) were reacted in the presence of *NEM* (69 mg, 0.60 mmol) due to protocol 4. Reaction time: 3 d. Purification by flash chromatography (gradient elution, ethyl acetate/petroleum ether = $1/2 \rightarrow 1/1$). Yield: 35 mg (11%) **7d** (R_f = 0.19) and 251 mg (58%) **9d/1** (R_f = 0.10), crystalline solid, mp 121–122°C, [α]_D = +24° cm³ g⁻¹ dm⁻¹ (c = 1.4, CHCl₃); ¹H NMR (CDCl₃, 300 MHz, COSY): δ = 1.42 (s, 3H, CH₃^{Citr}), 1.44 (s, 9H, CH₃^{tBu}), 2.37 (d, 1H, J = 15.6 Hz, CH₂^{Citr}), 2.75 (d, 1H, J = 15.6 Hz, CH₂^{Citr}), 2.99–3.14 (m, 2H, β -CH₂^{Phe}), 3.41 (m, 1H, 2-H), 3.56 (m, 1H, 5-H), 3.74–3.80 (m, 4H, 3,4-H, 6-H₂), 4.50 (d, 1H, J = 12.0 Hz, CH₂Ph), 4.56 (d, 1H, J = 10.8 Hz, CH₂Ph), 4.66 (d, 1H, J = 12.0 Hz, CH₂Ph), 4.77–4.88 (m, 3H, CH₂Ph), 4.95 (s, 2H, CH₂Ph), 5.12 (dd, 1H, J = 9.3, 9.0 Hz, 1-H), 5.64 (s, 1H, OH), 6.04 (d, 1H, J = 9.0 Hz, 1-NH), 7.16–7.45 (m, 26H, NH^{Phe}, H^{arom}) ppm; ¹³C NMR (CDCl₃, 75 MHz, APT): δ = 26.38 (CH₃^{Citr}), 28.05 (CH₃^{tBu}), 38.22 (β -CH₂^{Phe}), 42.79 (CH₂^{Citr}), 53.38 (α -CH^{Phe}), 68.36 (6-CH₂), 73.86, 74.58, 74.79, 75.24, 76.04 (4CH₂Ph, C^{Citr}), 76.70, 77.78, 78.87, 79.64 (5,4,2,1-H), 82.30

(C^{tBu}), 86.27 (3-CH), 127.2–129.6, 136.39, 138.02, 138.08, 138.31, 138.60 (C^{arom}), 170.37, 173.20, 175.14 ppm; IR (KBr): $\bar{\nu} = 3400$, 1732, 1659, 1518 cm⁻¹; MS (FAB): m/z = 873.4 [M + H] ⁺.

tert-Butyl N-{(2S)-1,4-dioxo-2-hydroxy-2-methyl-4-[(2,3,4,6-tetra-O-benzyl- β -D-glucopyranosyl)amino]butyl}prolinate (9d/2, C₄₈H₅₈N₂O₁₀)

6d (409 mg, 0.50 mmol) and HCl*H-Pro-O'Bu (125 mg, 0.60 mmol) were reacted in the presence of NEM (69 mg, 0.60 mmol) due to protocol 4. Reaction time: 4 d. Purification by flash chromatography (ethyl acetate/petroleum ether = 3/4). Yield: 155 mg (48%) 7d ($R_f = 0.32$) and 141 mg (34%) 9d/2 $(R_{\rm f} = 0.10)$, foamy solid, $[\alpha]_{\rm D} = +10^{\circ} \,{\rm cm}^3 \,{\rm g}^{-1} \,{\rm dm}^{-1}$ (c = 1.4, CHCl₃); ¹H NMR (CDCl₃, 400 MHz, 300 K, COSY): rotamers, ratio 3:1, $\delta = 1.32$ (s, CH₃^{Citr}_{min}), 1.38 (s, CH₃^{tBu}_{maj}), 1.40 (s, CH₃^{tBu}_{min}), 1.44 (s, $\text{CH}_{3}^{\text{Citr}}_{\text{maj}}$), 1.70–1.92 (m, β,γ -CH₂^{Pro}_{maj}, γ -CH₂^{Pro}_{min}), 2.02–2.09 (m, β -CH₂^{Pro}_{min}), 2.24 (d, $J = 15.2 \,\text{Hz}$, CH₂^{Citr}_{min}), 2.28 (d, $J = 14.8 \,\text{Hz}$, CH₂^{Citr}_{maj}), 2.86 (d, $J = 15.2 \,\text{Hz}$, CH₂^{Citr}_{min}), 2.93 (d, $J = 14.8 \,\text{Hz}$, CH₂^{Citr}_{maj}), 3.32–3.36 (m, 2-H), 3.39–3.46 (m, 5-H, δ -CH₂^{Pro}_{min}), 3.63–3.70 (m, 3,4-H, 6-H₂), 3.77 (m, δ -CH₂^{Pro}_{maj}), 3.91 (m, δ -CH₂^{Pro}_{maj}), 4.10 (dd, J = 3.9, 8.2 Hz, α -CH^{Pro}_{maj}), 4.41 (d, $J = 12.0 \text{ Hz}, \text{ CH}_2\text{Ph}_{\text{min}}$, 4.42 (d, $J = 12.0 \text{ Hz}, \text{ CH}_2\text{Ph}_{\text{mai}}$), 4.46 (d, $J = 11.0 \text{ Hz}, \text{ CH}_2\text{Ph}_{\text{min} + \text{mai}}$), 4.55 (d, J = 12.0 Hz, CH₂Ph_{min}), 4.56 (d, J = 12.0 Hz, CH₂Ph_{mai}), 4.67 (d, J = 10.4 Hz, CH₂Ph_{min + maj}), 4.73 (α -CH^{Pro}_{min}), 4.74–4.86 (4 CH₂Ph_{min + maj}), 5.11 (dd, J=9.3, 9.3 Hz, 1-H), 5.65 (br.s, OH_{maj}), 5.79 (br.s, OH_{min}), 5.99 (d, J=9.3 Hz, 1-NH_{min}), 6.21 (d, J=9.3 Hz, 1-NH_{mai}), 7.07–7.30 (H^{arom}) ppm; ¹³C NMR (CDCl₃, 75 MHz, 300 K, HETCOR, APT): $\delta = 21.17$ (γ -CH₂^{Pro}_{min}), 25.41 $\begin{array}{c} (\text{CH}_{3}^{\text{Citr}}_{\text{maj}}), \ 25.62 \ (\gamma\text{-CH}_{2}^{\text{Pro}}_{\text{maj}}), \ 26.16 \ (\text{CH}_{3}^{\text{Citr}}_{\text{min}}), \ 28.18 \ (\beta\text{-CH}_{2}^{\text{Pro}}_{\text{maj}}), \ 28.30 \ (\text{CH}_{3}^{\text{Ha}}), \ 32.12 \ (\beta\text{-CH}_{2}^{\text{Pro}}_{\text{min}}), \ 44.71 \ (\text{CH}_{2}^{\text{Citr}}_{\text{min}}), \ 45.30 \ (\text{CH}_{2}^{\text{Citr}}_{\text{maj}}), \ 48.36 \ (\delta\text{-CH}_{2}^{\text{Pro}}_{\text{min}}), \ 48.62 \ (\delta\text{-CH}_{2}^{\text{Pro}}_{\text{maj}}), \ 48.62 \ (\delta\text{-CH}_{2}^{\text{Pro}}_{\text{Pro}}_{\text{Pro}}, \ \delta\text{-CH}_{2}^{\text{Pro}}_{\text{Pro}}_{\text{Pro}}, \ \delta\text{-CH}_{2}^{\text{Pro}}_{\text{Pro}}_{\text{Pro}}, \ \delta\text{-CH}_{2}^{\text{Pro}}_{\text{Pro}}, \ \delta\text{-CH}_{2}^{\text{Pro}}_{\text{Pro}}_{\text{Pro}}_{\text{Pro}}, \ \delta\text{-CH}_{2}^{\text{Pro}}_{\text{Pro}}_{\text{Pro}}, \ \delta\text{-CH}_$ 61.33 (α-CH^{Pro}_{min}), 61.46 (α-CH^{Pro}_{maj}), 68.51 (6-CH₂), 73.84 (CH₂Ph), 74.74 (C^{Citr}), 75.00, 75.25, 76.00 (3CH₂Ph), 76.58 (5-CH_{min}), 76.74 (5-CH_{maj}), 77.69 (4-CH), 78.89 (1-CH_{min}), 79.08 (1-CH_{maj}), 80.53 (2-CH_{min}), 80.90 (2-CH_{maj}), 81.10 (C^{tBu}_{maj}), 81.35 (C^{tBu}_{min}), 86.06 (3-CH), 127.94–129.24, 138.06, 138.34 (2c), 138.72 (C^{arom}), 171.86, 172.41, 173.22, 173.63, 173.93 ppm; IR (KBr): $\bar{\nu} = 3400$, 1732, 1628, 1552 cm⁻¹; MS (FAB): m/z = 823.4 [M + H]⁺.

tert-Butyl N-{(2S)-1,4-dioxo-2-hydroxy-2-methyl-4-[(2,3,4,6-tetra-O-benzyl- β -D-glucopyranosyl)amino]butyl}phenylalanylalaninate (9d/3, C₅₅H₆₅N₃O₁₁)

A solution of Z-Phe-Ala-O'Bu (256 mg, 0.60 mmol) in ethyl acetate (40 cm³) was vigorously stirred for 4 h in an atmosphere of hydrogen in the presence of 100 mg of 10% Pd/C. After filtration and removal of the organic solvent in vacuo the remaining residue was reacted with 6d (409 mg, 0.50 mmol) in the presence of NEM (69 mg, 0.60 mmol) due to protocol 4. Reaction time: 5 d. Purification by flash chromatography (ethyl acetate/petroleum ether = 1/1). Yield: 54 mg (17%) 7d ($R_f = 0.46$) and 337 mg (71%) **9d/3** ($R_f = 0.27$), crystalline solid, mp 154–156°C; $[\alpha]_D = -3^{\circ} \text{ cm}^3 \text{ g}^{-1} \text{ dm}^{-1}$ $(c = 2.5, \text{ CHCl}_3)$; ¹H NMR (CDCl₃, 300 MHz, COSY): $\delta = 1.34$ (d, 3H, $J = 7.2 \text{ Hz}, \text{ CH}_3^{\text{Ala}}$), 1.40 (s, 3H, CH_3^{Citr}), 1.49 (s, 9H, CH_3^{tBu}), 2.31 (d, J = 15.6 Hz, CH_2^{Citr}), 2.69 (d, J = 15.6 Hz, CH_2^{Citr}), 3.04 (dd, 1H, J = 6.3, 13.8 Hz, β -CH₂^{Phe}), 3.20 (dd, 1H, J = 6.3, 13.8 Hz, β -CH₂^{Phe}), 3.38 (m, 1H, 2-H), 3.54 (m, 1H, 5-H), 3.71–3.81 (m, 4H, 3,4-H, 6-H₂), 4.39 (m, 1H, α -CH^{Ala}), 4.49 (d, 1H, J = 12.3 Hz, CH₂Ph), 4.55 (d, 1H, J = 10.5 Hz, CH₂Ph), 4.56 (m, 1H, α -CH^{Phe}), 4.64 (d, 1H, J = 12.3 Hz, CH₂Ph), 4.76 (d, 1H, J = 11.4 Hz, CH₂Ph), 4.83 (d, 1H, J = 11.4 Hz, CH₂Ph), 4.85 (d, 1H, J = 10.5 Hz, CH₂Ph), 4.94 (s, 2H, CH₂Ph), 5.08 (dd, 1H, J = 9.3, 9.0 Hz, 1-H), 5.55 (s, 1H, OH), 5.94 (d, 1H, J=9.0 Hz, 1-NH), 6.54 (d, 1H, J=6.9 Hz, NH^{Ala}), 7.15–7.43 (m, 26H, NH^{Phe}, H^{arom}) ppm; ¹³C NMR (CDCl₃, 75 MHz, APT): $\delta = 18.76$ (CH₃^{Ala}), 26.55 (CH₃^{Citr}), 28.21 (CH₃^{tBu}), 37.72 (β-CH₂^{Phe}), 42.92 (CH₂^{Citr}), 49.01 (α-CH^{Ala}), 54.15 (α-CH^{Phe}), 68.30 (6-CH₂), 73.84, 74.58, 74.76, 75.24, 76.06 (4 CH₂Ph, C^{Citr}), 76.67, 77.76, 78.81, 79.56 (5,4,2,1-CH), 82.19 (C^{tBu}), 86.24 (3-CH), 127.2–129.8, 136.56, 137.94, 138.03, 138.25, 138.52 (C^{arom}), 170.02, 171.97, 173.02, 175.85 ppm; IR (KBr): $\bar{\nu} = 3400, 1732, 1653, 1528 \text{ cm}^{-1}$; MS (FAB): $m/z = 944.5 \text{ [M + H]}^+$.

Synthesis of N-Glycosylated Derivatives of Thiomalic Acid

N-(2,3,4,6-Tetra-O-acetyl- β -D-glucopyranosyl)-2-[(4RS)-5-oxo-2,2-bis(trifluoromethyl)-1,3-oxathiolan-4-yl]acetamide (10, C₂₁H₂₃F₆NO₁₂S)

3c (2.66 g, 8.40 mmol) and 5a (2.92 g, 8.40 mmol) were reacted due to protocol 1. Purification by flash chromatography (ethyl acetate/petroleum ether = 1/1, $R_f = 0.25$, both diastereomers). Yield 3.90 g (74%), recrystallization from toluene, mp 77–78°C; ¹H NMR (CDCl₃, 300 MHz): mixture of diastereomers, ratio 1:1, $\delta = 2.03$ (s, 6H), 2.04 (s, 6H), 2.07 (s, 6H), 2.09 (s, 6H) (OAc), 2.68 (dd, 1H, J = 11.4, 16.8 Hz), 2.81 (dd, 1H, J = 9.9, 16.8 Hz), 3.08 (dd, 1H, J = 4.2, 16.8 Hz), 3.25 (dd, 2H), 3.2 J = 3.3, 16.8 Hz (CH₂^{Thiomal}), 3.81 (ddd, 2H, J = 2.1, 4.5, 9.9 Hz, 5-H), 4.06–4.11 (m, 2H, 6-H_a), 4.29 $(dd, 1H, J = 4.5, 12.3 Hz, 6-H_b), 4.33 (dd, 1H, J = 4.5, 12.3 Hz, 6-H_b), 4.49-4.54 (m, 2H, CH^{Thiomal}), 4.49-4.54 (m, 2H,$ 4.90 (dd, 2H, J=9.6, 9.3 Hz), 5.06 (dd, 1H, J=9.9, 9.6 Hz), 5.07 (dd, 1H, J=9.9, 9.6 Hz), 5.20 (dd, 1H, J=9.3, 9.3 Hz), 5.22 (dd, 1H, J=9.3, 9.3 Hz), 5.31 (dd, 1H, J=9.6, 9.3 Hz), 5.32 (dd, 1H, Hz) J=9.6, 9.3 Hz) (1,2,3,4-H), 6.43 (d, 2H, J=9.0 Hz, 1-NH) ppm; ¹⁹F NMR (CDCl₃, 282 MHz): $\delta = 0.81 - 0.97$ (m, 6F), 1.54 (q, 3F, J = 9.0 Hz), 1.73 (q, 3F, J = 9.0 Hz) ppm; ¹³C NMR (CDCl₃, 75 MHz): $\delta = 20.71$, 20.75, 20.84, 20.86 (4OAc), 39.76, 40.05 (CH₂^{Thiomal}), 41.80, 41.85 (CH^{Thiomal}), 61.94 (6-CH₂), 68.36 (4-CH), 70.90 (2-CH), 72.78, 72.84 (3-CH), 73.97, 74.04 (5-CH), 78.47, 78.55 (1-CH), 83.87 (sept, J = 35.0 Hz), 121.00 (q, J = 283.0 Hz), 121.10 (q, J = 283.0 Hz), 168.93, 169.14, 169.91 (2c), 170.11 (2c), 170.61, 170.69, 170.93, 170.96, 171.21, 171.35 ppm; IR (KBr): $\bar{\nu} = 1817$, 1754, 1799, 1543 cm⁻¹; MS (FAB): $m/z = 628.1 [M + H]^+$.

N-{(2RS)-1,4-Dioxo-2-mercapto-4-[(2,3,4,6-tetra-O-acetyl- β -Dglucopyranosyl)amino]butyl}-phenylalanine amide (**11**, C₂₇H₃₅N₃O₁₂S)

10 (627 mg, 1.00 mmol) and HCl^{*}H-*Phe*-NH₂ (241 mg, 1.20 mmol) were reacted in the presence of *NEM* (138 mg, 1.20 mmol) due to protocol 4. Reaction time: 2 d. Purification by flash chromatography (CHCl₃/*Me*OH = 10/1, R_f = 0.25, both diastereomers). Yield 506 mg (81%), foamy solid; ¹H NMR (CD₃OD, 300 MHz): mixture of diastereomers, ratio 1:1, δ = 2.00–2.05 (several s, 24H, OAc), 2.59 (dd, 1H, *J* = 7.2, 15.9 Hz, CH₂^{Thiomal}), 2.69 (dd, 1H, *J* = 6.9, 12.6 Hz, CH₂^{Thiomal}), 2.85–3.24 (m, 6H, CH₂^{Thiomal}, β -CH₂^{Phe}), 3.73–3.81 (m, 2H, CH^{Thiomal}), 3.93–3.40 (m, 2H, 5-H), 4.08–4.15 (m, 2H, 6-H_a), 4.25–4.32 (m, 2H, 6-H_b), 4.56 (dd, 1H, *J* = 5.7, 8.7 Hz, α -CH^{Phe}), 4.64 (dd, 1H, *J* = 4.8, 9.3 Hz, α -CH^{Phe}), 4.97–5.11 (m, 4H, 2,4-H), 5.33–5.42 (m, 4H, 1,3-H), 7.23–7.35 (m, 10H, H^{arom}) ppm; ¹³C NMR (CD₃OD, 75 MHz): δ = 19.50, 19.57, 19.60 (OAc), 37.15, 37.33 (β -CH₂^{Phe}, CH₂^{Thiomal}), 41.13 (CH^{Thiomal}), 54.63, 55.03 (α -CH^{Phe}), 62.04 (6-CH₂), 68.47, 70.86, 70.96, 73.51, 73.60, 73.65 (2,3,4,5-CH), 77.59, 77.68 (1-CH), 126.63, 126.69, 128.35, 128.40, 129.27, 129.35, 137.46 (C^{arom}), 170.23, 170.38, 170.51, 171.23, 171.74, 171.98, 173.04, 173.50, 174.65, 174.96 ppm; IR (KBr): $\bar{\nu}$ = 1749, 1664, 1525 cm⁻¹; MS (FAB): m/z = 626.2 [M + H]⁺.

Acknowledgements

We thank Deutsche Forschungsgemeinschaft (Bu 277/21-1) and Stiftung Volkswagenwerk, Hannover, for financial support.

References

- [1] Burger K, Kluge M, Fehn S, Koksch B, Hennig L, Müller G (1999) Angew Chem Int Ed 38: 1414
- [2] (a) Varki A (1993) Glycobiology 3: 97; (b) Dwek RA (1996) Chem Rev 96: 683; (c) Kihlberg J, Ahman J, Walse B, Drakenberg T, Nilsson A, Söderberg-Ahlm C, Bengtsson B, Ohlson HJ (1995) Med Chem 38: 161
- [3] Opdenakker G, Rudd PM, Ponting CP, Dwek RA (1993) FASEB J 7: 1330

- [4] (a) Helenius A (1994) Mol Biol Cell 5: 253; (b) Trombetta ES, Helenius A (1998) Curr Opin Struct Biol 8: 587; (c) Helenius A, Aebi M (2001) Science 291: 2364
- [5] Hakomori SI (1989) Adv Cancer Res 52: 257
- [6] Roy R (1997) Top Curr Chem 187: 241
- [7] (a) Miller JS, Dudkin VJ, Lyon GJ, Muir TW, Danishefsky SJ (2003) Angew Chem Int Ed 42: 431; (b) Danishefsky SJ, Allen J (2000) Angew Chem Int Ed 39: 836; Lohof E, Planker E, Mang C, Burkhart F, Dechantsreiter MA, Haubner R, Wester H-J, Schwaiger M, Hölzemann G, Goodman SL, Kessler H (2000) Angew Chem Int Ed 39: 2761; (d) Herpin TF, Motherwell WB, Weibel J-M (1997) Chem Commun 923; (e) O'Connor SE, Imperiali B (1997) J Am Chem Soc 119: 2295; (f) Fisher JF, Harrison AW, Bundy GL, Wilkinson KF, Rush BD, Ruwart MJ (1991) J Med Chem 34: 3141
- [8] Harrison AW, Fisher JF, Guido DM, Couch SJ, Lawson JA, Sutter DM, Williams MV, DeGraaf GL, Rogers JE, Pals DT, DuCharme DW (1994) Biorg Med Chem 2: 1339
- [9] Risley JM, Huang DH, Kaylor JJ, Malik JJ, Xia Y-Q, York WM (2001) Arch Biochem Biophys 391: 165
- [10] (a) Simmons HE, Wiley DW (1960) J Am Chem Soc 82: 2288; (b) Weygand F, Burger K, Engelhardt K (1966) Chem Ber 99: 1461
- [11] Coppola GM, Schuster HF (1997) α-Hydroxy Acids in Enantioselective Syntheses. VCH, Weinheim, p 191
- [12] Böttcher C, Burger K (2002) Tetrahedron Lett 43: 9711
- [13] Burger K, Windeisen E, Pires R (1995) J Org Chem 60: 7641
- [14] Sjölin P, Kihlberg J (2001) J Org Chem 66: 2957 and references cited therein
- [15] Weygand F, Burger K (1996) Chem Ber 99: 2880
- [16] Burger K, Windeisen E, Heistracher E, Lange T, Abdel Aleem AAH (2002) Monatsh Chem 133: 41
- [17] Pumpor K, Windeisen E, Burger KJ (2003) Heterocycl Chem 40: 435
- [18] Burger K, Windeisen E, Pires R (1995) J Org Chem 60: 7641
- [19] (a) Pires R, Burger K (1996) Synthesis 1277; (b) Pires R, Burger K (1997) Tetrahedron 53: 9213
- [20] Kaduk C, Wenschuh H, Beyermann M, Forner K, Carpino LA, Bienert M (1995) Lett Pept Sci 2: 285
- [21] (a) Christiansen-Brams I, Meldal M, Bock K (1993) J Chem Soc Perkin Trans 1, 1461; (b) Ito Y, Gerz M, Nakahara Y (2000) Tetrahedron Lett 41: 1039
- [22] Ziegler T, Kaisers HJ, Schloemer R, Kocj C (1999) Tetrahedron 55: 8397
- [23] Ratcliff AJ, Fraser-Reid B (1990) J Chem Soc Perkin Trans 1, 747
- [24] Böttcher C (2003) PhD Thesis, University of Leipzig
- [25] Shin I, Jung H-J, Lee M-R (2001) Tetrahedron Lett 42: 1325
- [26] (a) Cohen DS, Fink CA, Trapani AJ, Webb RL, Zane PA, Chatelain RE (1999) Cardiovasc Drug Rev 17: 16; (b) Gaucher JF, Selkti M, Tiraboschi G, Prangé T, Roques P, Thomas A, Fournié-Zaluski (1999) Bio-Chemistry 38: 12569; (c) Bohacek R, Lombaert SD, McMartin C, Priestle J, Grütter M (1996) J Am Chem Soc 118: 8231
- [27] Kraus GA, Bae J, Choudhury PK (2003) Synthesis 19
- [28] Kleemann A, Engel J (1987) Pharmazeutische Chemie. Synthesen Patente Anwendungen. Thieme, Stuttgart, p 1104
- [29] (a) Robl JA (April 16, 1996) Bristol-Meyers-Squibb, Patent No US-5,508,272; Chem Abstr (1996) 125: 33695h; (b) Karanewsky DS, Robl JA (September 3, 1996) Bristol-Meyers-Squibb, Patent No US-5,552,397; Chem Abstr (1966) 125: 328738a
- [30] Fray MJ, Ellis D (1998) Tetrahedron 54: 13825
- [31] (a) Soth MJ, Nowick JS (1999) Curr Opin Chem Biol 64: 276; (b) Aubé J (ed) (2000) Recent Advances in Peptidomimetics, Tetrahedron Symposium in Print No 83 56: 9725
- [32] Spengler J (unpublished results)